BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26049530)

  • 1. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations.
    Vener MV; Odinokov AV; Wehmeyer C; Sebastiani D
    J Chem Phys; 2015 Jun; 142(21):215106. PubMed ID: 26049530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.
    Huerta-Viga A; Amirjalayer S; Domingos SR; Meuzelaar H; Rupenyan A; Woutersen S
    J Chem Phys; 2015 Jun; 142(21):212444. PubMed ID: 26049464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas-phase salt bridge interactions between glutamic acid and arginine.
    Jaeqx S; Oomens J; Rijs AM
    Phys Chem Chem Phys; 2013 Oct; 15(38):16341-52. PubMed ID: 23999680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.
    Yuwen T; Xue Y; Skrynnikov NR
    Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
    Ghosh T; Garde S; García AE
    Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of a salt-bridge model system in water and DMSO.
    Lotze S; Bakker HJ
    J Chem Phys; 2015 Jun; 142(21):212436. PubMed ID: 26049456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of arginine-glutamate salt bridges to helix stability.
    Walker KD; Causgrove TP
    J Mol Model; 2009 Oct; 15(10):1213-9. PubMed ID: 19263093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative helix stabilization by complex Arg-Glu salt bridges.
    Olson CA; Spek EJ; Shi Z; Vologodskii A; Kallenbach NR
    Proteins; 2001 Aug; 44(2):123-32. PubMed ID: 11391775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy of solvated salt bridges: a simulation and experimental study.
    White AD; Keefe AJ; Ella-Menye JR; Nowinski AK; Shao Q; Pfaendtner J; Jiang S
    J Phys Chem B; 2013 Jun; 117(24):7254-9. PubMed ID: 23697872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation reveals a surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal nuclease.
    Gruia AD; Fischer S; Smith JC
    Proteins; 2003 Feb; 50(3):507-15. PubMed ID: 12557192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the strength of salt bridges: a comparison of current biomolecular force fields.
    Debiec KT; Gronenborn AM; Chong LT
    J Phys Chem B; 2014 Jun; 118(24):6561-9. PubMed ID: 24702709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The [Lys(-2)-Arg(-1)-des(17-21)]-endothelin-1 peptide retains the specific Arg(-1)-Asp8 salt bridge but reveals discrepancies between NMR data and molecular dynamics simulations.
    Kaas Q; Aumelas A; Kubo S; Chino N; Kobayashi Y; Chiche L
    Biochemistry; 2002 Sep; 41(37):11099-108. PubMed ID: 12220174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removing an interhelical salt bridge abolishes coiled-coil formation in a de novo designed peptide.
    Meier M; Lustig A; Aebi U; Burkhard P
    J Struct Biol; 2002; 137(1-2):65-72. PubMed ID: 12064934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2004 Feb; 126(7):2208-14. PubMed ID: 14971956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of protonated dipeptides: the role of arginine in stabilizing salt bridges.
    Prell JS; O'Brien JT; Steill JD; Oomens J; Williams ER
    J Am Chem Soc; 2009 Aug; 131(32):11442-9. PubMed ID: 19624125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt Bridge in Aqueous Solution: Strong Structural Motifs but Weak Enthalpic Effect.
    Pylaeva S; Brehm M; Sebastiani D
    Sci Rep; 2018 Sep; 8(1):13626. PubMed ID: 30206276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development.
    Jiang F; Han W; Wu YD
    Phys Chem Chem Phys; 2013 Mar; 15(10):3413-28. PubMed ID: 23385383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.