BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26049530)

  • 21. Salt bridges do not stabilize polyproline II helices.
    Whittington SJ; Creamer TP
    Biochemistry; 2003 Dec; 42(49):14690-5. PubMed ID: 14661982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bulky side chains and non-native salt bridges slow down the folding of a cross-linked helical peptide: a combined molecular dynamics and time-resolved infrared spectroscopy study.
    Paoli B; Seeber M; Backus EH; Ihalainen JA; Hamm P; Caflisch A
    J Phys Chem B; 2009 Apr; 113(13):4435-42. PubMed ID: 19256526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations.
    Spacková N; Réblová K; Sponer J
    J Phys Chem B; 2010 Aug; 114(32):10581-93. PubMed ID: 20701388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide salt bridge stability: from gas phase via microhydration to bulk water simulations.
    Pluhařová E; Marsalek O; Schmidt B; Jungwirth P
    J Chem Phys; 2012 Nov; 137(18):185101. PubMed ID: 23163393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opening the Arg-Glu salt bridge in myosin: computational study.
    Kaliman I; Grigorenko B; Shadrina M; Nemukhin A
    Phys Chem Chem Phys; 2009 Jun; 11(24):4804-7. PubMed ID: 19506754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability.
    Wolny M; Batchelor M; Bartlett GJ; Baker EG; Kurzawa M; Knight PJ; Dougan L; Woolfson DN; Paci E; Peckham M
    Sci Rep; 2017 Mar; 7():44341. PubMed ID: 28287151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids.
    Kuo HT; Yang PA; Wang WR; Hsu HC; Wu CH; Ting YT; Weng MH; Kuo LH; Cheng RP
    Amino Acids; 2014 Aug; 46(8):1867-83. PubMed ID: 24744084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanism for stabilizing a short helical peptide studied by generalized-ensemble simulations with explicit solvent.
    Sugita Y; Okamoto Y
    Biophys J; 2005 May; 88(5):3180-90. PubMed ID: 15749777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability and rigidity/flexibility-two sides of the same coin?
    Mamonova TB; Glyakina AV; Galzitskaya OV; Kurnikova MG
    Biochim Biophys Acta; 2013 May; 1834(5):854-66. PubMed ID: 23416444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The α-defensin salt-bridge induces backbone stability to facilitate folding and confer proteolytic resistance.
    Andersson HS; Figueredo SM; Haugaard-Kedström LM; Bengtsson E; Daly NL; Qu X; Craik DJ; Ouellette AJ; Rosengren KJ
    Amino Acids; 2012 Oct; 43(4):1471-83. PubMed ID: 22286872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Free energy landscape of a minimalist salt bridge model.
    Li X; Lv C; Corbett KM; Zheng L; Wu D; Yang W
    Protein Sci; 2016 Jan; 25(1):270-6. PubMed ID: 26300526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrational circular dichroism and IR spectral analysis as a test of theoretical conformational modeling for a cyclic hexapeptide.
    Bour P; Kim J; Kapitan J; Hammer RP; Huang R; Wu L; Keiderling TA
    Chirality; 2008 Nov; 20(10):1104-19. PubMed ID: 18506832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Configurational entropy elucidates the role of salt-bridge networks in protein thermostability.
    Missimer JH; Steinmetz MO; Baron R; Winkler FK; Kammerer RA; Daura X; van Gunsteren WF
    Protein Sci; 2007 Jul; 16(7):1349-59. PubMed ID: 17586770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics simulations of peptides from the central domain of smooth muscle caldesmon.
    Shepherd CM; van der Spoel D; Vogel HJ
    J Biomol Struct Dyn; 2004 Feb; 21(4):555-66. PubMed ID: 14692799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations.
    Cino EA; Choy WY; Karttunen M
    J Chem Theory Comput; 2012 Aug; 8(8):2725-2740. PubMed ID: 22904695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Salt-specific stability and denaturation of a short salt-bridge-forming alpha-helix.
    Dzubiella J
    J Am Chem Soc; 2008 Oct; 130(42):14000-7. PubMed ID: 18821757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Why is the Arg5-Glu13 salt bridge conserved in mammalian alpha-defensins?
    Wu Z; Li X; de Leeuw E; Ericksen B; Lu W
    J Biol Chem; 2005 Dec; 280(52):43039-47. PubMed ID: 16246847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results.
    Langley DR
    J Biomol Struct Dyn; 1998 Dec; 16(3):487-509. PubMed ID: 10052609
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of lysine side chain length on intra-helical glutamate--lysine ion pairing interactions.
    Cheng RP; Girinath P; Ahmad R
    Biochemistry; 2007 Sep; 46(37):10528-37. PubMed ID: 17718542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin.
    Kuo HT; Liu SL; Chiu WC; Fang CJ; Chang HC; Wang WR; Yang PA; Li JH; Huang SJ; Huang SL; Cheng RP
    Amino Acids; 2015 May; 47(5):885-98. PubMed ID: 25646959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.