These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 26050063)
21. Sulfate and phosphate ions removal using novel nano-adsorbents: modeling and optimization, kinetics, isotherm and thermodynamic studies. Shahzadi T; Anwaar A; Riaz T; Zaib M Int J Phytoremediation; 2022; 24(14):1518-1532. PubMed ID: 35188838 [TBL] [Abstract][Full Text] [Related]
22. Highly efficient engineered waste eggshell-fly ash for cadmium removal from aqueous solution. Segneanu AE; Marin CN; Vlase G; Cepan C; Mihailescu M; Muntean C; Grozescu I Sci Rep; 2022 Jun; 12(1):9676. PubMed ID: 35690618 [TBL] [Abstract][Full Text] [Related]
23. Phosphorylated chitin from shrimp shell waste: A robust solution for cadmium remediation. Charii H; Boussetta A; Benali K; Essifi K; Mennani M; Benhamou AA; El Zakhem H; Sehaqui H; El Achaby M; Grimi N; Boutoial K; Ablouh EH; Moubarik A Int J Biol Macromol; 2024 May; 268(Pt 2):131855. PubMed ID: 38679259 [TBL] [Abstract][Full Text] [Related]
24. Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution. Lu J; Jin RN; Liu C; Wang YF; Ouyang XK Int J Biol Macromol; 2016 Dec; 93(Pt A):547-556. PubMed ID: 27614195 [TBL] [Abstract][Full Text] [Related]
25. Microwave promoted graft copolymerization of poly(ethylacrylate) onto k-carrageenan for removal of Cd and Ni from aqueous solution. Moses M; Mutegoa E; Singh SK Int J Biol Macromol; 2024 Apr; 265(Pt 1):130755. PubMed ID: 38490379 [TBL] [Abstract][Full Text] [Related]
26. Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies. Kaur N; Kaur M; Singh D Environ Pollut; 2019 Oct; 253():111-119. PubMed ID: 31302397 [TBL] [Abstract][Full Text] [Related]
27. Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan. Li M; Zhang Z; Li R; Wang JJ; Ali A Int J Biol Macromol; 2016 May; 86():876-84. PubMed ID: 26879912 [TBL] [Abstract][Full Text] [Related]
28. Removal of copper(II) ions from aqueous solution by modified bagasse. Jiang Y; Pang H; Liao B J Hazard Mater; 2009 May; 164(1):1-9. PubMed ID: 18790566 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb Pap S; Radonić J; Trifunović S; Adamović D; Mihajlović I; Vojinović Miloradov M; Turk Sekulić M J Environ Manage; 2016 Dec; 184(Pt 2):297-306. PubMed ID: 27729179 [TBL] [Abstract][Full Text] [Related]
30. A new sand adsorbent for the removal and reuse of nickel ions from aqueous solutions. Tao W; Qi L; Duan H; Liu S Water Sci Technol; 2017 Apr; 75(7-8):1812-1819. PubMed ID: 28452773 [TBL] [Abstract][Full Text] [Related]
31. Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorus L. Lata H; Garg VK; Gupta RK J Hazard Mater; 2008 Sep; 157(2-3):503-9. PubMed ID: 18294768 [TBL] [Abstract][Full Text] [Related]
32. The effective Ni(II) removal of red mud modified chitosan from aqueous solution. Luu TT; Nguyen DK; Nguyen TTP; Ho TH; Dinh VP; Kiet HAT Environ Monit Assess; 2023 Jan; 195(2):254. PubMed ID: 36592254 [TBL] [Abstract][Full Text] [Related]
33. An enhanced method for the removal of methyl violet dye using magnetite nanoparticles as an adsorbent: Isotherm, kinetic and thermodynamic study. Tiwari AN; Tapadia K; Thakur C Water Sci Technol; 2022 Aug; 86(4):625-642. PubMed ID: 36038968 [TBL] [Abstract][Full Text] [Related]
34. Optimization of Ni(II) adsorption onto Cloisite Na Maleki S; Karimi-Jashni A Chemosphere; 2020 May; 246():125710. PubMed ID: 31891842 [TBL] [Abstract][Full Text] [Related]
35. Adsorption of Cu(II) and Ni(II) ions from wastewater onto bentonite and bentonite/GO composite. Chang YS; Au PI; Mubarak NM; Khalid M; Jagadish P; Walvekar R; Abdullah EC Environ Sci Pollut Res Int; 2020 Sep; 27(26):33270-33296. PubMed ID: 32529626 [TBL] [Abstract][Full Text] [Related]
36. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms. Kango S; Kumar R Environ Monit Assess; 2016 Jan; 188(1):60. PubMed ID: 26711813 [TBL] [Abstract][Full Text] [Related]
37. Adsorption of Pb(II) ions from contaminated water by 1,2,3,4-butanetetracarboxylic acid-modified microcrystalline cellulose: Isotherms, kinetics, and thermodynamic studies. Hashem A; Fletcher AJ; Younis H; Mauof H; Abou-Okeil A Int J Biol Macromol; 2020 Dec; 164():3193-3203. PubMed ID: 32853617 [TBL] [Abstract][Full Text] [Related]
38. Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. Xiong L; Chen C; Chen Q; Ni J J Hazard Mater; 2011 May; 189(3):741-8. PubMed ID: 21466911 [TBL] [Abstract][Full Text] [Related]
39. Biomass assisted synthesis of alumina by Gardenia Jasminoides Ellis and their application for removal of Ni(II) from aqueous solution. Zheng N; Zhao Y; Song Q; Jia L; Fang W J Hazard Mater; 2013 Sep; 260():1057-63. PubMed ID: 23892172 [TBL] [Abstract][Full Text] [Related]
40. Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. Zhang X; Wang X PLoS One; 2015; 10(2):e0117077. PubMed ID: 25647398 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]