These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26050149)

  • 1. Sequential dynamic artificial neural network modeling of a full-scale coking wastewater treatment plant with fluidized bed reactors.
    Ou HS; Wei CH; Wu HZ; Mo CH; He BY
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15910-9. PubMed ID: 26050149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential modelling of a full-scale wastewater treatment plant using an artificial neural network.
    Lee JW; Suh C; Hong YS; Shin HS
    Bioprocess Biosyst Eng; 2011 Oct; 34(8):963-73. PubMed ID: 21533792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic programming expressions for effluent quality prediction: Towards AI-driven monitoring and management of wastewater treatment plants.
    Elsayed A; Ghaith M; Yosri A; Li Z; El-Dakhakhni W
    J Environ Manage; 2024 Apr; 356():120510. PubMed ID: 38490009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic pollution removal from coke plant wastewater using coking coal.
    Gao L; Li S; Wang Y; Sun H
    Water Sci Technol; 2015; 72(1):158-63. PubMed ID: 26114284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).
    Wu X; Yang Y; Wu G; Mao J; Zhou T
    J Environ Manage; 2016 Jan; 165():235-242. PubMed ID: 26439861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlating bacterial and archaeal community with efficiency of a coking wastewater treatment plant employing anaerobic-anoxic-oxic process in coal industry.
    Ban Q; Zhang L; Li J
    Chemosphere; 2022 Jan; 286(Pt 2):131724. PubMed ID: 34388873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process.
    Li J; Yuan X; Zhao H; Li F; Lei Z; Zhang Z
    Bioresour Technol; 2018 Jan; 247():1206-1209. PubMed ID: 28919474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.
    Xing R; Zheng Z; Wen D
    J Environ Sci (China); 2015 Mar; 29():45-50. PubMed ID: 25766012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of COD in industrial wastewater treatment plant using an artificial neural network.
    Çimen Mesutoğlu Ö; Gök O
    Sci Rep; 2024 Jun; 14(1):13750. PubMed ID: 38877150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel integrated system of three-dimensional electrochemical reactors (3DERs) and three-dimensional biofilm electrode reactors (3DBERs) for coking wastewater treatment.
    Wu ZY; Liu Y; Wang SY; Peng P; Li XY; Xu J; Li WH
    Bioresour Technol; 2019 Jul; 284():222-230. PubMed ID: 30939384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: Performance, mechanism, and full-scale application.
    Sun G; Zhang Y; Gao Y; Han X; Yang M
    Water Res; 2020 Apr; 173():115517. PubMed ID: 32028246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tertiary treatment of coke plant effluent by indigenous material from an integrated steel plant: a sustainable approach.
    Das S; Biswas P; Sarkar S
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7379-7387. PubMed ID: 31884536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed corona discharge for improving treatability of coking wastewater.
    Liu M; Preis S; Kornev I; Hu Y; Wei CH
    J Environ Sci (China); 2018 Feb; 64():306-316. PubMed ID: 29478652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-based prediction of effluent total suspended solids in a wastewater treatment plant using different feature selection approaches: A comparative study.
    Gholizadeh M; Saeedi R; Bagheri A; Paeezi M
    Environ Res; 2024 Apr; 246():118146. PubMed ID: 38215928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of Coagulation and Ozone Catalytic Oxidation for Pretreating Coking Wastewater.
    Chen L; Xu Y; Sun Y
    Int J Environ Res Public Health; 2019 May; 16(10):. PubMed ID: 31096662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated three-dimensional electrochemical system for efficient treatment of coking wastewater rich in ammonia nitrogen.
    Wu Z; Zhu W; Liu Y; Peng P; Li X; Zhou X; Xu J
    Chemosphere; 2020 May; 246():125703. PubMed ID: 31881443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.
    Zhang W; Wei C; An G
    Environ Sci Process Impacts; 2015 May; 17(5):975-84. PubMed ID: 25865172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of artificial neural network model for continuous hydrogen production using confectionery wastewater.
    Yogeswari MK; Dharmalingam K; Mullai P
    J Environ Manage; 2019 Dec; 252():109684. PubMed ID: 31622794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of COD removal in a biological wastewater treatment plant using adaptive neuro-fuzzy inference system and artificial neural network.
    Civelekoglu G; Yigit NO; Diamadopoulos E; Kitis M
    Water Sci Technol; 2009; 60(6):1475-87. PubMed ID: 19759450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and microbial community dynamics relationship within a step-feed anoxic/oxic/anoxic/oxic process (SF-A/O/A/O) for coking wastewater treatment.
    Fan L; Yao H; Deng S; Jia F; Cai W; Hu Z; Guo J; Li H
    Sci Total Environ; 2021 Oct; 792():148263. PubMed ID: 34144239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.