BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 26050169)

  • 1. Study of major aromatic compounds in port wines from carotenoid degradation.
    Silva Ferreira AC; Monteiro J; Oliveira C; Guedes de Pinho P
    Food Chem; 2008 Sep; 110(1):83-7. PubMed ID: 26050169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carotenoid, chlorophyll, and chlorophyll-derived compounds in grapes and port wines.
    Mendes-Pinto MM; Silva Ferreira AC; Caris-Veyrat C; Guedes de Pinho P
    J Agric Food Chem; 2005 Dec; 53(26):10034-41. PubMed ID: 16366691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoid breakdown products the-norisoprenoids-in wine aroma.
    Mendes-Pinto MM
    Arch Biochem Biophys; 2009 Mar; 483(2):236-45. PubMed ID: 19320050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoid and chlorophyll-derived compounds in some wine grapes grown in Apulian region.
    Crupi P; Coletta A; Milella RA; Palmisano G; Baiano A; La Notte E; Antonacci D
    J Food Sci; 2010 May; 75(4):S191-8. PubMed ID: 20546421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of carotenoid profiles in grapes, musts, and fortified wines from Douro varieties of Vitis vinifera.
    Guedes De Pinho P; Silva Ferreira AC; Mendes Pinto M; Benitez JG; Hogg TA
    J Agric Food Chem; 2001 Nov; 49(11):5484-8. PubMed ID: 11714348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of some carotenoids in grapes by reversed- and normal-phase liquid chromatography: a qualitative analysis.
    Mendes-Pinto MM; Ferreira AC; Oliveira MB; Guedes de Pinho P
    J Agric Food Chem; 2004 May; 52(10):3182-8. PubMed ID: 15137873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Sensory Significance of Apocarotenoids in Wine: Importance of Carotenoid Cleavage Dioxygenase 1 (CCD1) in the Production of β-Ionone.
    Timmins JJB; Kroukamp H; Paulsen IT; Pretorius IS
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32560189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of UV-B irradiation on the carotenoid content of Vitis vinifera tissues.
    Steel CC; Keller M
    Biochem Soc Trans; 2000 Dec; 28(6):883-5. PubMed ID: 11171244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of tobacco aroma from lutein. Specific role of the microorganisms involved in the process.
    Maldonado-Robledo G; Rodriguez-Bustamante E; Sanchez-Contreras A; Rodriguez-Sanoja R; Sanchez S
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):484-8. PubMed ID: 12827317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carotenoid-Related Volatile Compounds of Tobacco (
    Popova V; Ivanova T; Prokopov T; Nikolova M; Stoyanova A; Zheljazkov VD
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31547525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine.
    Slaghenaufi D; Ugliano M
    Front Chem; 2018; 6():66. PubMed ID: 29616214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of heating and illumination on trans-cis isomerization and degradation of beta-carotene and lutein in isolated spinach chloroplasts.
    Aman R; Schieber A; Carle R
    J Agric Food Chem; 2005 Nov; 53(24):9512-8. PubMed ID: 16302770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo.
    Azevedo-Meleiro CH; Rodriguez-Amaya DB
    J Agric Food Chem; 2007 May; 55(10):4027-33. PubMed ID: 17444652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of beta-carotene and lutein transport in Caco-2 cells: carotenoid-carotenoid interactions and transport inhibition by ezetimibe.
    O'Sullivan L; Aisling SA; O'Brien NM
    Int J Vitam Nutr Res; 2009 Sep; 79(5-6):337-47. PubMed ID: 20533220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associations of plasma carotenoid concentrations and dietary intake of specific carotenoids in samples of two prospective cohort studies using a new carotenoid database.
    Michaud DS; Giovannucci EL; Ascherio A; Rimm EB; Forman MR; Sampson L; Willett WC
    Cancer Epidemiol Biomarkers Prev; 1998 Apr; 7(4):283-90. PubMed ID: 9568782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in some carotenoids and apocarotenoids during flower development in Boronia megastigma (Nees).
    Cooper CM; Davies NW; Menary RC
    J Agric Food Chem; 2009 Feb; 57(4):1513-20. PubMed ID: 19166317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose exerts a negative effect over a peroxidase from Trichosporon asahii, with carotenoid cleaving activity.
    Rodríguez-Bustamante E; Maldonado-Robledo G; Arreguín-Espinosa R; Mendoza-Hernández G; Rodríguez-Sanoja R; Sánchez S
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):499-510. PubMed ID: 19390852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the postprandial chylomicron carotenoid responses in young and older subjects.
    Cardinault N; Tyssandier V; Grolier P; Winklhofer-Roob BM; Ribalta J; Bouteloup-Demange C; Rock E; Borel P
    Eur J Nutr; 2003 Dec; 42(6):315-23. PubMed ID: 14673604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the uptake and secretion of carotene and xanthophyll carotenoids by Caco-2 intestinal cells.
    O'Sullivan L; Ryan L; O'Brien N
    Br J Nutr; 2007 Jul; 98(1):38-44. PubMed ID: 17445346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of postharvest dehydration on the composition of pinot noir grapes (Vitis vinifera L.) and wine.
    Moreno JJ; Cerpa-Calderón F; Cohen SD; Fang Y; Qian M; Kennedy JA
    Food Chem; 2008 Aug; 109(4):755-62. PubMed ID: 26049988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.