BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26050182)

  • 1. Flavonoid pattern of sage (Salvia officinalis L.) unifloral honey.
    Kenjerić D; Mandić ML; Primorac L; Čačić F
    Food Chem; 2008 Sep; 110(1):187-92. PubMed ID: 26050182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys.
    Yao L; Jiang Y; D'Arcy B; Singanusong R; Datta N; Caffin N; Raymont K
    J Agric Food Chem; 2004 Jan; 52(2):210-4. PubMed ID: 14733497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flavonoids in monospecific eucalyptus honeys from Australia.
    Martos I; Ferreres F; Yao L; D'Arcy B; Caffin N; Tomás-Barberán FA
    J Agric Food Chem; 2000 Oct; 48(10):4744-8. PubMed ID: 11052728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riboflavin and lumichrome in Dalmatian sage honey and other unifloral honeys determined by LC-DAD technique.
    Tuberoso CI; Jerković I; Bifulco E; Marijanovic Z; Congiu F; Bubalo D
    Food Chem; 2012 Dec; 135(3):1985-90. PubMed ID: 22953948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A variety of volatile compounds as markers in unifloral honey from dalmatian sage (Salvia officinalis L.).
    Jerković I; Mastelić J; Marijanović Z
    Chem Biodivers; 2006 Dec; 3(12):1307-16. PubMed ID: 17193245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry.
    Petrus K; Schwartz H; Sontag G
    Anal Bioanal Chem; 2011 Jun; 400(8):2555-63. PubMed ID: 21229237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid chromatography-tandem mass spectrometry reveals the widespread occurrence of flavonoid glycosides in honey, and their potential as floral origin markers.
    Truchado P; Ferreres F; Tomas-Barberan FA
    J Chromatogr A; 2009 Oct; 1216(43):7241-8. PubMed ID: 19683245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive Molecules for Discriminating
    Bobiş O; Bonta V; Cornea-Cipcigan M; Nayik GA; Dezmirean DS
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of flavonoid markers for the botanical origin of Eucalyptus honey.
    Martos I; Ferreres F; Tomás-Barberán FA
    J Agric Food Chem; 2000 May; 48(5):1498-502. PubMed ID: 10820049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid chromatography-tandem mass spectrometry analysis allows the simultaneous characterization of C-glycosyl and O-glycosyl flavonoids in stingless bee honeys.
    Truchado P; Vit P; Ferreres F; Tomas-Barberan F
    J Chromatogr A; 2011 Oct; 1218(42):7601-7. PubMed ID: 21831383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of antioxidant capacities, α-dicarbonyls, and phenolic phytochemicals in Florida varietal honeys using HPLC-DAD-ESI-MS(n.).
    Marshall SM; Schneider KR; Cisneros KV; Gu L
    J Agric Food Chem; 2014 Aug; 62(34):8623-31. PubMed ID: 25102012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry.
    Kečkeš S; Gašić U; Veličković TĆ; Milojković-Opsenica D; Natić M; Tešić Ž
    Food Chem; 2013 May; 138(1):32-40. PubMed ID: 23265452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenolic compounds in Hungarian acacia, linden, milkweed and goldenrod honeys.
    Farkas Á; Horváth G; Kuzma M; Mayer M; Kocsis M
    Curr Res Food Sci; 2023; 6():100526. PubMed ID: 37333501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the pig caecum model to mimic the human intestinal metabolism of hispidulin and related compounds.
    Labib S; Hummel S; Richling E; Humpf HU; Schreier P
    Mol Nutr Food Res; 2006 Jan; 50(1):78-86. PubMed ID: 16317785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl syringate: a chemical marker of asphodel (Asphodelus microcarpus Salzm. et Viv.) monofloral honey.
    Tuberoso CI; Bifulco E; Jerković I; Caboni P; Cabras P; Floris I
    J Agric Food Chem; 2009 May; 57(9):3895-900. PubMed ID: 19309074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive Constituents and Antioxidant Activity of Some Carpathian Basin honeys.
    Gyergyák K; Boros B; Marton K; Felinger A; Papp N; Farkas Á
    Nat Prod Commun; 2016 Feb; 11(2):245-50. PubMed ID: 27032212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic acid composition and antioxidant properties of Malaysian honeys.
    Khalil MI; Alam N; Moniruzzaman M; Sulaiman SA; Gan SH
    J Food Sci; 2011 Aug; 76(6):C921-8. PubMed ID: 22417491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mint (
    Pavlešić T; Poljak S; Mišetić Ostojić D; Lučin I; Reynolds CA; Kalafatovic D; Saftić Martinović L
    Food Technol Biotechnol; 2022 Dec; 60(4):509-519. PubMed ID: 36816879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of botanical biomarkers in Argentinean Diplotaxis honeys: flavonoids and glucosinolates.
    Truchado P; Tourn E; Gallez LM; Moreno DA; Ferreres F; Tomás-Barberán FA
    J Agric Food Chem; 2010 Dec; 58(24):12678-85. PubMed ID: 21090564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine.
    Mărgăoan R; Topal E; Balkanska R; Yücel B; Oravecz T; Cornea-Cipcigan M; Vodnar DC
    Antioxidants (Basel); 2021 Jun; 10(7):. PubMed ID: 34202118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.