These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 26050594)
1. A versatile mathematical work-flow to explore how Cancer Stem Cell fate influences tumor progression. Fornari C; Balbo G; Halawani SM; Ba-Rukab O; Ahmad AR; Calogero RA; Cordero F; Beccuti M BMC Syst Biol; 2015; 9 Suppl 3(Suppl 3):S1. PubMed ID: 26050594 [TBL] [Abstract][Full Text] [Related]
2. Strategies for cancer stem cell elimination: insights from mathematical modeling. Vainstein V; Kirnasovsky OU; Kogan Y; Agur Z J Theor Biol; 2012 Apr; 298():32-41. PubMed ID: 22210402 [TBL] [Abstract][Full Text] [Related]
3. A mathematical-biological joint effort to investigate the tumor-initiating ability of Cancer Stem Cells. Fornari C; Beccuti M; Lanzardo S; Conti L; Balbo G; Cavallo F; Calogero RA; Cordero F PLoS One; 2014; 9(9):e106193. PubMed ID: 25184361 [TBL] [Abstract][Full Text] [Related]
4. A 3D multiscale model of cancer stem cell in tumor development. Li F; Tan H; Singh J; Yang J; Xia X; Bao J; Ma J; Zhan M; Wong ST BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S12. PubMed ID: 24564919 [TBL] [Abstract][Full Text] [Related]
5. Die hard: are cancer stem cells the Bruce Willises of tumor biology? Fábián A; Barok M; Vereb G; Szöllosi J Cytometry A; 2009 Jan; 75(1):67-74. PubMed ID: 19051297 [TBL] [Abstract][Full Text] [Related]
6. Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization. Bessonov N; Pinna G; Minarsky A; Harel-Bellan A; Morozova N PLoS One; 2019; 14(11):e0224787. PubMed ID: 31710617 [TBL] [Abstract][Full Text] [Related]
7. Investigating the link between epithelial-mesenchymal transition and the cancer stem cell phenotype: A mathematical approach. Turner C; Kohandel M J Theor Biol; 2010 Aug; 265(3):329-35. PubMed ID: 20648969 [TBL] [Abstract][Full Text] [Related]
8. Modeling of Cancer Stem Cell State Transitions Predicts Therapeutic Response. Sehl ME; Shimada M; Landeros A; Lange K; Wicha MS PLoS One; 2015; 10(9):e0135797. PubMed ID: 26397099 [TBL] [Abstract][Full Text] [Related]
9. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. Barbieri F; Thellung S; Ratto A; Carra E; Marini V; Fucile C; Bajetto A; Pattarozzi A; Würth R; Gatti M; Campanella C; Vito G; Mattioli F; Pagano A; Daga A; Ferrari A; Florio T BMC Cancer; 2015 Apr; 15():228. PubMed ID: 25884842 [TBL] [Abstract][Full Text] [Related]
10. Reprogramming strategies for the establishment of novel human cancer models. Sancho-Martinez I; Izpisua Belmonte JC Cell Cycle; 2016 Sep; 15(18):2393-7. PubMed ID: 27314153 [TBL] [Abstract][Full Text] [Related]
11. Cancer Stem Cells: A Minor Cancer Subpopulation that Redefines Global Cancer Features. Enderling H; Hlatky L; Hahnfeldt P Front Oncol; 2013; 3():76. PubMed ID: 23596563 [TBL] [Abstract][Full Text] [Related]
12. Differentiation and transdifferentiation potentials of cancer stem cells. Huang Z; Wu T; Liu AY; Ouyang G Oncotarget; 2015 Nov; 6(37):39550-63. PubMed ID: 26474460 [TBL] [Abstract][Full Text] [Related]
13. Establishment of human ovarian serous carcinomas cell lines in serum free media. Pan Z; Hooley J; Smith DH; Young P; Roberts PE; Mather JP Methods; 2012 Mar; 56(3):432-9. PubMed ID: 22445873 [TBL] [Abstract][Full Text] [Related]
14. A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. Molina-Peña R; Álvarez MM PLoS One; 2012; 7(2):e26233. PubMed ID: 22363395 [TBL] [Abstract][Full Text] [Related]
15. Sedimentation field flow fractionation monitoring of in vitro enrichment in cancer stem cells by specific serum-free culture medium. Mélin C; Perraud A; Bounaix Morand du Puch C; Loum E; Giraud S; Cardot P; Jauberteau MO; Lautrette C; Battu S; Mathonnet M J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jul; 963():40-6. PubMed ID: 24927420 [TBL] [Abstract][Full Text] [Related]
17. Cancer stem cells and the cellular hierarchy in haematological malignancies. Johnsen HE; Kjeldsen MK; Urup T; Fogd K; Pilgaard L; Boegsted M; Nyegaard M; Christiansen I; Bukh A; Dybkaer K Eur J Cancer; 2009 Sep; 45 Suppl 1():194-201. PubMed ID: 19775618 [TBL] [Abstract][Full Text] [Related]
18. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata. Monteagudo Á; Santos J PLoS One; 2015; 10(7):e0132306. PubMed ID: 26176702 [TBL] [Abstract][Full Text] [Related]
19. Role of CD44(high)/CD133(high) HCT-116 cells in the tumorigenesis of colon cancer. Zhou JY; Chen M; Ma L; Wang X; Chen YG; Liu SL Oncotarget; 2016 Feb; 7(7):7657-66. PubMed ID: 26840024 [TBL] [Abstract][Full Text] [Related]
20. The developing cancer stem-cell model: clinical challenges and opportunities. Vermeulen L; de Sousa e Melo F; Richel DJ; Medema JP Lancet Oncol; 2012 Feb; 13(2):e83-9. PubMed ID: 22300863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]