These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Proteolysis targeting chimeric molecules as therapy for multiple myeloma: efficacy, biomarker and drug combinations. Lim SL; Damnernsawad A; Shyamsunder P; Chng WJ; Han BC; Xu L; Pan J; Pravin DP; Alkan S; Tyner JW; Koeffler HP Haematologica; 2019 Jun; 104(6):1209-1220. PubMed ID: 30606790 [TBL] [Abstract][Full Text] [Related]
64. Impact of Target Warhead and Linkage Vector on Inducing Protein Degradation: Comparison of Bromodomain and Extra-Terminal (BET) Degraders Derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET Inhibitor Scaffolds. Chan KH; Zengerle M; Testa A; Ciulli A J Med Chem; 2018 Jan; 61(2):504-513. PubMed ID: 28595007 [TBL] [Abstract][Full Text] [Related]
65. In situ albumin-binding and esterase-specifically cleaved BRD4-degrading PROTAC for targeted cancer therapy. Cho H; Jeon SI; Shim MK; Ahn CH; Kim K Biomaterials; 2023 Apr; 295():122038. PubMed ID: 36787659 [TBL] [Abstract][Full Text] [Related]
66. BRD4 PROTAC degrader MZ1 exerts anticancer effects in acute myeloid leukemia by targeting c-Myc and ANP32B genes. Ma L; Wang J; Zhang Y; Fang F; Ling J; Chu X; Zhang Z; Tao Y; Li X; Tian Y; Li Z; Sang X; Zhang K; Lu L; Wan X; Chen Y; Yu J; Zhuo R; Wu S; Lu J; Pan J; Hu S Cancer Biol Ther; 2022 Dec; 23(1):1-15. PubMed ID: 36170346 [TBL] [Abstract][Full Text] [Related]
67. ARV-825 Showed Antitumor Activity against BRD4-NUT Fusion Protein by Targeting the BRD4. Yang L; Jing Y; Xia X; Yin X J Oncol; 2023; 2023():9904143. PubMed ID: 38130463 [TBL] [Abstract][Full Text] [Related]
68. A "Click Chemistry Platform" for the Rapid Synthesis of Bispecific Molecules for Inducing Protein Degradation. Wurz RP; Dellamaggiore K; Dou H; Javier N; Lo MC; McCarter JD; Mohl D; Sastri C; Lipford JR; Cee VJ J Med Chem; 2018 Jan; 61(2):453-461. PubMed ID: 28378579 [TBL] [Abstract][Full Text] [Related]
69. Design, synthesis, and biological evaluation of novel 4,4-difluoro-1-methyl-N, 6-diphenyl-5, 6-dihydro-4H-pyrimido [4, 5-b] [1, 2, 4] triazolo [4, 3-d] [1, 4] diazepin-8-amine derivatives as potential BRD4 inhibitors. Li J; Zhang W; Qiu Q; Zhou D; Feng Z; Tong Z; Wei J; Huang W; Li J; Qian H; Shi W Chem Biol Drug Des; 2021 May; 97(5):1117-1128. PubMed ID: 33638254 [TBL] [Abstract][Full Text] [Related]
70. Homo-PROTACs for the Chemical Knockdown of Cereblon. Steinebach C; Lindner S; Udeshi ND; Mani DC; Kehm H; Köpff S; Carr SA; Gütschow M; Krönke J ACS Chem Biol; 2018 Sep; 13(9):2771-2782. PubMed ID: 30118587 [TBL] [Abstract][Full Text] [Related]
71. Multiple myeloma: Combination therapy of BET proteolysis targeting chimeric molecule with CDK9 inhibitor. Lim SL; Xu L; Han BC; Shyamsunder P; Chng WJ; Koeffler HP PLoS One; 2020; 15(6):e0232068. PubMed ID: 32559187 [TBL] [Abstract][Full Text] [Related]
72. Selective degradation of BET proteins with dBET1, a proteolysis-targeting chimera, potently reduces pro-inflammatory responses in lipopolysaccharide-activated microglia. DeMars KM; Yang C; Castro-Rivera CI; Candelario-Jalil E Biochem Biophys Res Commun; 2018 Feb; 497(1):410-415. PubMed ID: 29448097 [TBL] [Abstract][Full Text] [Related]
73. BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment. Piya S; Mu H; Bhattacharya S; Lorenzi PL; Davis RE; McQueen T; Ruvolo V; Baran N; Wang Z; Qian Y; Crews CM; Konopleva M; Ishizawa J; You MJ; Kantarjian H; Andreeff M; Borthakur G J Clin Invest; 2019 May; 129(5):1878-1894. PubMed ID: 30829648 [TBL] [Abstract][Full Text] [Related]
74. BRD4 PROTAC as a novel therapeutic approach for the treatment of vemurafenib resistant melanoma: Preformulation studies, formulation development and in vitro evaluation. Rathod D; Fu Y; Patel K Eur J Pharm Sci; 2019 Oct; 138():105039. PubMed ID: 31394259 [TBL] [Abstract][Full Text] [Related]
76. Combined inhibition of BET proteins and class I HDACs synergistically induces apoptosis in urothelial carcinoma cell lines. Hölscher AS; Schulz WA; Pinkerneil M; Niegisch G; Hoffmann MJ Clin Epigenetics; 2018; 10():1. PubMed ID: 29312470 [TBL] [Abstract][Full Text] [Related]
77. [Development of Protein Knockdown Technology as Emerging Drug Discovery Strategy]. Ohoka N Yakugaku Zasshi; 2018; 138(9):1135-1143. PubMed ID: 30175757 [TBL] [Abstract][Full Text] [Related]
78. Structural basis of PROTAC cooperative recognition for selective protein degradation. Gadd MS; Testa A; Lucas X; Chan KH; Chen W; Lamont DJ; Zengerle M; Ciulli A Nat Chem Biol; 2017 May; 13(5):514-521. PubMed ID: 28288108 [TBL] [Abstract][Full Text] [Related]
79. Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-β-dependent mechanisms. Shi X; Mihaylova VT; Kuruvilla L; Chen F; Viviano S; Baldassarre M; Sperandio D; Martinez R; Yue P; Bates JG; Breckenridge DG; Schlessinger J; Turk BE; Calderwood DA Proc Natl Acad Sci U S A; 2016 Aug; 113(31):E4558-66. PubMed ID: 27432991 [TBL] [Abstract][Full Text] [Related]
80. Nanog requires BRD4 to maintain murine embryonic stem cell pluripotency and is suppressed by bromodomain inhibitor JQ1 together with Lefty1. Horne GA; Stewart HJ; Dickson J; Knapp S; Ramsahoye B; Chevassut T Stem Cells Dev; 2015 Apr; 24(7):879-91. PubMed ID: 25393219 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]