BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 2605128)

  • 21. Developmental changes in transferrin and iron uptake by the brain in the rat.
    Taylor EM; Morgan EH
    Brain Res Dev Brain Res; 1990 Aug; 55(1):35-42. PubMed ID: 2208639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron utilization in rabbit reticulocytes. A study using succinylacetone as an inhibitor or heme synthesis.
    Ponka P; Wilczynska A; Schulman HM
    Biochim Biophys Acta; 1982 Feb; 720(1):96-105. PubMed ID: 7059619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects on cellular iron metabolism of the physiologically relevant diatomic effector molecules, NO and CO, that bind iron.
    Watts RN; Richardson DR
    Biochim Biophys Acta; 2004 May; 1692(1):1-15. PubMed ID: 15158359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-transferrin dependent 59Fe uptake in phytohemagglutinin-stimulated human peripheral lymphocytes.
    Hamazaki S; Glass J
    Exp Hematol; 1992 May; 20(4):436-41. PubMed ID: 1568461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of desferrioxamine, rhodotorulic acid and cholylhydroxamic acid on transferrin and iron exchange with hepatocytes in culture.
    Baker E; Page M; Torrance J; Grady R
    Clin Physiol Biochem; 1985; 3(6):277-88. PubMed ID: 4075694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. After haemin treatment intracellular non-haem iron increases prior to haem oxygenase-1 induction: A study in human monocytic cell line THP-1.
    Imoto S; Shibuya Y; Kono M; Ohbuchi A; Sawamura T; Suzuki T; Mizokoshi Y; Sawada H; Saigo K
    Transfus Apher Sci; 2019 Dec; 58(6):102662. PubMed ID: 31727545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of the ferritin H subunit in cultured erythroid cells changes the intracellular iron distribution.
    Picard V; Renaudie F; Porcher C; Hentze MW; Grandchamp B; Beaumont C
    Blood; 1996 Mar; 87(5):2057-64. PubMed ID: 8634457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intermediate steps in cellular iron uptake from transferrin. II. A cytoplasmic pool of iron is released from cultured cells via temperature-dependent mechanical wounding.
    Richardson DR; Dickson L; Baker E
    In Vitro Cell Dev Biol Anim; 1996 Sep; 32(8):486-95. PubMed ID: 8889603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chelation of transferrin iron by desferrioxamine in K562 cells. The partition of iron between ferrioxamine and ferritin.
    Roberts S; Bomford A
    Biochem J; 1988 Sep; 254(3):869-75. PubMed ID: 3196300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The iron metabolism of the human neuroblastoma cell: lack of relationship between the efficacy of iron chelation and the inhibition of DNA synthesis.
    Richardson DR; Ponka P
    J Lab Clin Med; 1994 Nov; 124(5):660-71. PubMed ID: 7964124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. delta-Aminolaevulinate synthase in human HepG2 hepatoma cells. Repression by haemin and induction by chemicals.
    Iwasa F; Sassa S; Kappas A
    Biochem J; 1989 Sep; 262(3):807-13. PubMed ID: 2556111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of hemoglobin synthesis, iron metabolism, and maturation of Friend leukemic cells by 5-amino levulinic acid and hemin.
    Malik Z; Halbrecht I; Djaldetti M
    Differentiation; 1979; 13(2):71-9. PubMed ID: 288721
    [No Abstract]   [Full Text] [Related]  

  • 33. Transferrin receptors and iron utilization in DMSO-inducible and -uninducible Friend erythroleukemia cells.
    Wilczynska A; Ponka P; Schulman HM
    Exp Cell Res; 1984 Oct; 154(2):561-6. PubMed ID: 6090189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemin control of heme biosynthesis in mouse Friend virus-transformed erythroleukemia cells in culture.
    Granick JL; Sassa S
    J Biol Chem; 1978 Aug; 253(15):5402-6. PubMed ID: 276528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Haem control in experimental porphyria. The effect of haemin on the induction of delta-aminolaevulinate synthase in isolated chick-embryo liver cells.
    Srivastava G; Brooker JD; May BK; Elliott WH
    Biochem J; 1980 Jun; 188(3):781-8. PubMed ID: 7470035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron metabolism in K562 erythroleukemic cells.
    Bottomley SS; Wolfe LC; Bridges KR
    J Biol Chem; 1985 Jun; 260(11):6811-5. PubMed ID: 2987233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transferrin is required for normal distribution of 59Fe and 54Mn in mouse brain.
    Malecki EA; Cook BM; Devenyi AG; Beard JL; Connor JR
    J Neurol Sci; 1999 Nov; 170(2):112-8. PubMed ID: 10561526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ferrochelatase, glutathione peroxidase and transferrin receptor mRNA synthesis and levels in mouse erythroleukemia cells.
    Fuchs O
    Stem Cells; 1993 May; 11 Suppl 1():13-23. PubMed ID: 8318915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transferrin homologue, melanotransferrin (p97), is rapidly catabolized by the liver of the rat and does not effectively donate iron to the brain.
    Richardson DR; Morgan EH
    Biochim Biophys Acta; 2004 Oct; 1690(2):124-33. PubMed ID: 15469901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rate of 59Fe uptake into brain and cerebrospinal fluid and the influence thereon of antibodies against the transferrin receptor.
    Ueda F; Raja KB; Simpson RJ; Trowbridge IS; Bradbury MW
    J Neurochem; 1993 Jan; 60(1):106-13. PubMed ID: 8417135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.