These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26051555)

  • 1. AngleJ: A new tool for the automated measurement of neurite growth orientation in tissue sections.
    Günther MI; Günther M; Schneiders M; Rupp R; Blesch A
    J Neurosci Methods; 2015 Aug; 251():143-50. PubMed ID: 26051555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AxonTracer: a novel ImageJ plugin for automated quantification of axon regeneration in spinal cord tissue.
    Patel A; Li Z; Canete P; Strobl H; Dulin J; Kadoya K; Gibbs D; Poplawski GHD
    BMC Neurosci; 2018 Mar; 19(1):8. PubMed ID: 29523078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth.
    Pool M; Thiemann J; Bar-Or A; Fournier AE
    J Neurosci Methods; 2008 Feb; 168(1):134-9. PubMed ID: 17936365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurite-J: an image-J plug-in for axonal growth analysis in organotypic cultures.
    Torres-Espín A; Santos D; González-Pérez F; del Valle J; Navarro X
    J Neurosci Methods; 2014 Oct; 236():26-39. PubMed ID: 25124852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-automated quantification of axonal densities in labeled CNS tissue.
    Grider MH; Chen Q; Shine HD
    J Neurosci Methods; 2006 Sep; 155(2):172-9. PubMed ID: 16469388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-automated counting of axon regeneration in poly(lactide co-glycolide) spinal cord bridges.
    McCreedy DA; Margul DJ; Seidlits SK; Antane JT; Thomas RJ; Sissman GM; Boehler RM; Smith DR; Goldsmith SW; Kukushliev TV; Lamano JB; Vedia BH; He T; Shea LD
    J Neurosci Methods; 2016 Apr; 263():15-22. PubMed ID: 26820904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of spinal cord white matter and sciatic nerve geometry inhibits axonal growth in vitro in the absence of glial scarring.
    Pettigrew DB; Shockley KP; Crutcher KA
    BMC Neurosci; 2001; 2():8. PubMed ID: 11399204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.
    Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D
    J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury.
    Stokols S; Tuszynski MH
    Biomaterials; 2006 Jan; 27(3):443-51. PubMed ID: 16099032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting RPTPσ with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model.
    Zhou HX; Li XY; Li FY; Liu C; Liang ZP; Liu S; Zhang B; Wang TY; Chu TC; Lu L; Ning GZ; Kong XH; Feng SQ
    Brain Res; 2014 Oct; 1586():46-63. PubMed ID: 25152470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A culture model for neurite regeneration of human spinal cord neurons.
    Koechling T; Khalique H; Sundström E; Ávila J; Lim F
    J Neurosci Methods; 2011 Oct; 201(2):346-54. PubMed ID: 21872620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury.
    Jaerve A; Schiwy N; Schmitz C; Mueller HW
    Exp Neurol; 2011 Oct; 231(2):284-94. PubMed ID: 21806987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.
    Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M
    Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord.
    Gu W; Zhang F; Xue Q; Ma Z; Lu P; Yu B
    Neuropathology; 2010 Jun; 30(3):205-17. PubMed ID: 19845866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury.
    Pfeifer K; Vroemen M; Blesch A; Weidner N
    Eur J Neurosci; 2004 Oct; 20(7):1695-704. PubMed ID: 15379990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury.
    Lu P; Jones LL; Tuszynski MH
    Exp Neurol; 2005 Feb; 191(2):344-60. PubMed ID: 15649491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord.
    Plant GW; Christensen CL; Oudega M; Bunge MB
    J Neurotrauma; 2003 Jan; 20(1):1-16. PubMed ID: 12614584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated method for the quantification of transgene expression in motor axons of the peripheral nerve.
    Anderson HE; Caldwell JH; Weir RF
    J Neurosci Methods; 2018 Oct; 308():346-353. PubMed ID: 30194042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.