These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26051557)

  • 21. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch.
    Villa A; Wöhnert J; Stock G
    Nucleic Acids Res; 2009 Aug; 37(14):4774-86. PubMed ID: 19515936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding site preorganization and ligand discrimination in the purine riboswitch.
    Sund J; Lind C; Åqvist J
    J Phys Chem B; 2015 Jan; 119(3):773-82. PubMed ID: 25014157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch
    Negi I; Mahmi AS; Seelam Prabhakar P; Sharma P
    J Chem Inf Model; 2021 Oct; 61(10):5243-5255. PubMed ID: 34609872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the Energy Landscape of Riboswitches Using Collective Variables Based on Tertiary Contacts.
    Prajapati JD; Onuchic JN; Sanbonmatsu KY
    J Mol Biol; 2022 Sep; 434(18):167788. PubMed ID: 35963460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence-dependent folding landscapes of adenine riboswitch aptamers.
    Lin JC; Hyeon C; Thirumalai D
    Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The kinetics of ligand binding by an adenine-sensing riboswitch.
    Wickiser JK; Cheah MT; Breaker RR; Crothers DM
    Biochemistry; 2005 Oct; 44(40):13404-14. PubMed ID: 16201765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields.
    Havrila M; Zgarbová M; Jurečka P; Banáš P; Krepl M; Otyepka M; Šponer J
    J Phys Chem B; 2015 Dec; 119(49):15176-90. PubMed ID: 26548477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study.
    Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR
    J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative stability of helices determines the folding landscape of adenine riboswitch aptamers.
    Lin JC; Thirumalai D
    J Am Chem Soc; 2008 Oct; 130(43):14080-1. PubMed ID: 18828635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isothermal Titration Calorimetry Measurements of Riboswitch-Ligand Interactions.
    Jones CP; Piszczek G; Ferré-D'Amaré AR
    Methods Mol Biol; 2019; 1964():75-87. PubMed ID: 30929236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control.
    Rieder R; Lang K; Graber D; Micura R
    Chembiochem; 2007 May; 8(8):896-902. PubMed ID: 17440909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The essential role of stacking adenines in a two-base-pair RNA kissing complex.
    Stephenson W; Asare-Okai PN; Chen AA; Keller S; Santiago R; Tenenbaum SA; Garcia AE; Fabris D; Li PT
    J Am Chem Soc; 2013 Apr; 135(15):5602-11. PubMed ID: 23517345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs.
    Noeske J; Richter C; Grundl MA; Nasiri HR; Schwalbe H; Wöhnert J
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1372-7. PubMed ID: 15665103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force field dependence of riboswitch dynamics.
    Hanke CA; Gohlke H
    Methods Enzymol; 2015; 553():163-91. PubMed ID: 25726465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.
    Jain N; Zhao L; Liu JD; Xia T
    Biochemistry; 2010 May; 49(17):3703-14. PubMed ID: 20345178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining Coarse-Grained Simulations and Single Molecule Analysis Reveals a Three-State Folding Model of the Guanidine-II Riboswitch.
    Fuks C; Falkner S; Schwierz N; Hengesbach M
    Front Mol Biosci; 2022; 9():826505. PubMed ID: 35573739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational transitions in RNA single uridine and adenosine bulge structures: a molecular dynamics free energy simulation study.
    Barthel A; Zacharias M
    Biophys J; 2006 Apr; 90(7):2450-62. PubMed ID: 16399833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular basis of RNA-mediated gene regulation on the adenine riboswitch by single-molecule approaches.
    Lemay JF; Penedo JC; Mulhbacher J; Lafontaine DA
    Methods Mol Biol; 2009; 540():65-76. PubMed ID: 19381553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.