These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26051557)

  • 41. Molecular basis of RNA-mediated gene regulation on the adenine riboswitch by single-molecule approaches.
    Lemay JF; Penedo JC; Mulhbacher J; Lafontaine DA
    Methods Mol Biol; 2009; 540():65-76. PubMed ID: 19381553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular simulation studies of monovalent counterion-mediated interactions in a model RNA kissing loop.
    Chen AA; Draper DE; Pappu RV
    J Mol Biol; 2009 Jul; 390(4):805-19. PubMed ID: 19482035
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative Visualization of the RNA Suboptimal Conformational Ensemble In Vivo.
    Woods CT; Lackey L; Williams B; Dokholyan NV; Gotz D; Laederach A
    Biophys J; 2017 Jul; 113(2):290-301. PubMed ID: 28625696
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An RNA molecular switch: Intrinsic flexibility of 23S rRNA Helices 40 and 68 5'-UAA/5'-GAN internal loops studied by molecular dynamics methods.
    Réblová K; Střelcová Z; Kulhánek P; Beššeová I; Mathews DH; Nostrand KV; Yildirim I; Turner DH; Sponer J
    J Chem Theory Comput; 2010 Jan; 2010(6):910-929. PubMed ID: 21132104
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conformational Flexibility and Dynamics of the Internal Loop and Helical Regions of the Kink-Turn Motif in the Glycine Riboswitch by Site-Directed Spin-Labeling.
    Esquiaqui JM; Sherman EM; Ye JD; Fanucci GE
    Biochemistry; 2016 Aug; 55(31):4295-305. PubMed ID: 27427937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Statistical mechanical prediction of ligand perturbation to RNA secondary structure and application to riboswitches.
    Alaidi O; Aboul-Ela F
    J Comput Chem; 2020 Jun; 41(16):1521-1537. PubMed ID: 32220073
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular modeling and dynamics studies of HIV-1 kissing loop structures.
    Pattabiraman N; Martinez HM; Shapiro BA
    J Biomol Struct Dyn; 2002 Dec; 20(3):397-412. PubMed ID: 12437378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
    Gong Z; Zhao Y; Chen C; Xiao Y
    J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequence elements distal to the ligand binding pocket modulate the efficiency of a synthetic riboswitch.
    Weigand JE; Gottstein-Schmidtke SR; Demolli S; Groher F; Duchardt-Ferner E; Wöhnert J; Suess B
    Chembiochem; 2014 Jul; 15(11):1627-37. PubMed ID: 24954073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of thermodynamic parameters for HIV DIS type loop-loop kissing complexes.
    Weixlbaumer A; Werner A; Flamm C; Westhof E; Schroeder R
    Nucleic Acids Res; 2004; 32(17):5126-33. PubMed ID: 15459283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch.
    Hanke CA; Gohlke H
    PLoS One; 2017; 12(6):e0179271. PubMed ID: 28640851
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dehydration from conserved stem regions is fundamental for ligand-dependent conformational transition of the adenine-specific riboswitch.
    Kumar V; Endoh T; Murakami K; Sugimoto N
    Chem Commun (Camb); 2012 Oct; 48(78):9693-5. PubMed ID: 22854864
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduced model captures Mg(2+)-RNA interaction free energy of riboswitches.
    Hayes RL; Noel JK; Whitford PC; Mohanty U; Sanbonmatsu KY; Onuchic JN
    Biophys J; 2014 Apr; 106(7):1508-19. PubMed ID: 24703312
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Riboswitches based on kissing complexes for the detection of small ligands.
    Durand G; Lisi S; Ravelet C; Dausse E; Peyrin E; Toulmé JJ
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):6942-5. PubMed ID: 24916019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct observation of hierarchical folding in single riboswitch aptamers.
    Greenleaf WJ; Frieda KL; Foster DA; Woodside MT; Block SM
    Science; 2008 Feb; 319(5863):630-3. PubMed ID: 18174398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [The adenine riboswitch: a new gene regulation mechanism].
    Lemay JF; Lafontaine DA
    Med Sci (Paris); 2006 Dec; 22(12):1053-9. PubMed ID: 17156726
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural Dynamics of Lateral and Diagonal Loops of Human Telomeric G-Quadruplexes in Extended MD Simulations.
    Islam B; Stadlbauer P; Krepl M; Havrila M; Haider S; Sponer J
    J Chem Theory Comput; 2018 Oct; 14(10):5011-5026. PubMed ID: 30183284
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA.
    Leipply D; Draper DE
    Biochemistry; 2011 Apr; 50(14):2790-9. PubMed ID: 21361309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Allosteric mechanism of the
    Tian S; Kladwang W; Das R
    Elife; 2018 Feb; 7():. PubMed ID: 29446752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.