These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 26051735)
1. Evaluation of anti-hyperglycemic effect of Actinidia kolomikta (Maxim. etRur.) Maxim. root extract. Hu X; Cheng D; Wang L; Li S; Wang Y; Li K; Yang Y; Zhang Z Pak J Pharm Sci; 2015 May; 28(3 Suppl):1135-40. PubMed ID: 26051735 [TBL] [Abstract][Full Text] [Related]
2. The ethanol extract of Eucommia ulmoides Oliv. leaves inhibits disaccharidase and glucose transport in Caco-2 cells. Zhang Y; Zhang H; Wang F; Yang D; Ding K; Fan J J Ethnopharmacol; 2015 Apr; 163():99-105. PubMed ID: 25620383 [TBL] [Abstract][Full Text] [Related]
3. Anti-hyperglycemic effects and mechanism of traditional Chinese medicine Huanglian Wan in streptozocin-induced diabetic rats. Deng YX; Zhang XJ; Shi QZ; Chen YS; Qiu XM; Chen B J Ethnopharmacol; 2012 Nov; 144(2):425-32. PubMed ID: 23036812 [TBL] [Abstract][Full Text] [Related]
4. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. Kim SH; Jo SH; Kwon YI; Hwang JK Int J Mol Sci; 2011; 12(6):3757-69. PubMed ID: 21747704 [TBL] [Abstract][Full Text] [Related]
5. Boerhaavia diffusa inhibits key enzymes linked to type 2 diabetes in vitro and in silico; and modulates abdominal glucose absorption and muscle glucose uptake ex vivo. Oyebode OA; Erukainure OL; Chukwuma CI; Ibeji CU; Koorbanally NA; Islam S Biomed Pharmacother; 2018 Oct; 106():1116-1125. PubMed ID: 30119178 [TBL] [Abstract][Full Text] [Related]
6. In vitro and in vivo reduction of post-prandial blood glucose levels by ethyl alcohol and water Zingiber mioga extracts through the inhibition of carbohydrate hydrolyzing enzymes. Jo SH; Cho CY; Lee JY; Ha KS; Kwon YI; Apostolidis E BMC Complement Altern Med; 2016 Mar; 16():111. PubMed ID: 27036710 [TBL] [Abstract][Full Text] [Related]
7. Selected tea and tea pomace extracts inhibit intestinal α-glucosidase activity in vitro and postprandial hyperglycemia in vivo. Oh J; Jo SH; Kim JS; Ha KS; Lee JY; Choi HY; Yu SY; Kwon YI; Kim YC Int J Mol Sci; 2015 Apr; 16(4):8811-25. PubMed ID: 25906471 [TBL] [Abstract][Full Text] [Related]
8. Anti-hyperglycemic activity of an aqueous extract from flower buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Mai TT; Chuyen NV Biosci Biotechnol Biochem; 2007 Jan; 71(1):69-76. PubMed ID: 17213665 [TBL] [Abstract][Full Text] [Related]
9. In vitro and in vivo antihyperglycemic effect of 2 amadori rearrangement compounds, arginyl-fructose and arginyl-fructosyl-glucose. Ha KS; Jo SH; Kang BH; Apostolidis E; Lee MS; Jang HD; Kwon YI J Food Sci; 2011 Oct; 76(8):H188-93. PubMed ID: 22417590 [TBL] [Abstract][Full Text] [Related]
10. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves. Toma A; Makonnen E; Mekonnen Y; Debella A; Addisakwattana S BMC Complement Altern Med; 2014 Jun; 14():180. PubMed ID: 24890563 [TBL] [Abstract][Full Text] [Related]
11. Hypoglycemic activity of the antioxidant saponarin, characterized as alpha-glucosidase inhibitor present in Tinospora cordifolia. Sengupta S; Mukherjee A; Goswami R; Basu S J Enzyme Inhib Med Chem; 2009 Jun; 24(3):684-90. PubMed ID: 18951283 [TBL] [Abstract][Full Text] [Related]
13. Saponin rich fractions from Polygonatum odoratum (Mill.) Druce with more potential hypoglycemic effects. Deng Y; He K; Ye X; Chen X; Huang J; Li X; Yuan L; Jin Y; Jin Q; Li P J Ethnopharmacol; 2012 May; 141(1):228-33. PubMed ID: 22366676 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of α-glucosidase by new prenylated flavonoids from euphorbia hirta L. herb. Sheliya MA; Rayhana B; Ali A; Pillai KK; Aeri V; Sharma M; Mir SR J Ethnopharmacol; 2015 Dec; 176():1-8. PubMed ID: 26477374 [TBL] [Abstract][Full Text] [Related]
15. The Postprandial Anti-Hyperglycemic Effect of Pyridoxine and Its Derivatives Using In Vitro and In Vivo Animal Models. Kim HH; Kang YR; Lee JY; Chang HB; Lee KW; Apostolidis E; Kwon YI Nutrients; 2018 Feb; 10(3):. PubMed ID: 29495635 [TBL] [Abstract][Full Text] [Related]
16. Inhibitory effect of saccharides and phenolic compounds from maize silks on intestinal α-glucosidases. Alvarado-Díaz CS; Gutiérrez-Méndez N; Mendoza-López ML; Rodríguez-Rodríguez MZ; Quintero-Ramos A; Landeros-Martínez LL; Rodríguez-Valdez LM; Rodríguez-Figueroa JC; Pérez-Vega S; Salmeron-Ochoa I; Leal-Ramos MY J Food Biochem; 2019 Jul; 43(7):e12896. PubMed ID: 31353692 [TBL] [Abstract][Full Text] [Related]
17. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. Adisakwattana S; Ruengsamran T; Kampa P; Sompong W BMC Complement Altern Med; 2012 Jul; 12():110. PubMed ID: 22849553 [TBL] [Abstract][Full Text] [Related]
18. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: an in vitro study. El-Beshbishy H; Bahashwan S Toxicol Ind Health; 2012 Feb; 28(1):42-50. PubMed ID: 21636683 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant, α-glucosidase inhibitory activity and sub-chronic toxicity of Derris reticulata extract: its antidiabetic potential. Kumkrai P; Weeranantanapan O; Chudapongse N BMC Complement Altern Med; 2015 Feb; 15():35. PubMed ID: 25887793 [TBL] [Abstract][Full Text] [Related]
20. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]