These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Effects of lipid headgroup and packing stress on poly(ethylene glycol)-induced phospholipid vesicle aggregation and fusion. Yang Q; Guo Y; Li L; Hui SW Biophys J; 1997 Jul; 73(1):277-82. PubMed ID: 9199792 [TBL] [Abstract][Full Text] [Related]
23. Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles. Lentz BR; McIntyre GF; Parks DJ; Yates JC; Massenburg D Biochemistry; 1992 Mar; 31(10):2643-53. PubMed ID: 1547207 [TBL] [Abstract][Full Text] [Related]
24. Effect of head group on phospholipid mixing in small, unilamellar vesicles: mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine. Lentz BR; Litman BJ Biochemistry; 1978 Dec; 17(25):5537-43. PubMed ID: 728414 [No Abstract] [Full Text] [Related]
25. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Lindsey H; Petersen NO; Chan SI Biochim Biophys Acta; 1979 Jul; 555(1):147-67. PubMed ID: 476096 [TBL] [Abstract][Full Text] [Related]
26. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures. Chong PL; Tang D; Sugar IP Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336 [TBL] [Abstract][Full Text] [Related]
27. Time-resolved and equilibrium measurements of the effects of poly(ethylene glycol) on small unilamellar phospholipid vesicles. Viguera AR; Mencía M; Goñi FM Biochemistry; 1993 Apr; 32(14):3708-13. PubMed ID: 8466910 [TBL] [Abstract][Full Text] [Related]
28. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance. Traïkia M; Warschawski DE; Recouvreur M; Cartaud J; Devaux PF Eur Biophys J; 2000; 29(3):184-95. PubMed ID: 10968210 [TBL] [Abstract][Full Text] [Related]
29. Influence of dilution on the physical state of model bile systems: NMR and quasi-elastic light-scattering investigations. Stark RE; Gosselin GJ; Donovan JM; Carey MC; Roberts MF Biochemistry; 1985 Sep; 24(20):5599-605. PubMed ID: 4074715 [TBL] [Abstract][Full Text] [Related]
30. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate. Neubrand MW; Carey MC; Laue TM Biochemistry; 2015 Nov; 54(45):6783-95. PubMed ID: 26506107 [TBL] [Abstract][Full Text] [Related]
31. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies. Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113 [TBL] [Abstract][Full Text] [Related]
32. The formation of multilamellar vesicles from saturated phosphatidylcholines and phosphatidylethanolamines: morphology and quasi-elastic light scattering measurements. Singer MA; Finegold L; Rochon P; Racey TJ Chem Phys Lipids; 1990 May; 54(2):131-46. PubMed ID: 2364473 [TBL] [Abstract][Full Text] [Related]
33. Development of a combined NMR paramagnetic ion-induced line-broadening/dynamic light scattering method for permeability measurements across lipid bilayer membranes. Xiang TX; Anderson BD J Pharm Sci; 1995 Nov; 84(11):1308-15. PubMed ID: 8587048 [TBL] [Abstract][Full Text] [Related]
34. Acyl chain order and lateral domain formation in mixed phosphatidylcholine--sphingomyelin multilamellar and unilamellar vesicles. Lentz BR; Hoechli M; Barenholz Y Biochemistry; 1981 Nov; 20(24):6803-9. PubMed ID: 7317355 [TBL] [Abstract][Full Text] [Related]
35. Lipid miscibility and size increase of vesicles composed of two phosphatidylcholines. Massari S; Colonna R Biochim Biophys Acta; 1986 Dec; 863(2):264-76. PubMed ID: 3790560 [TBL] [Abstract][Full Text] [Related]
36. Ursodeoxycholate stabilizes phospholipid-rich membranes and mimics the effect of cholesterol: investigations on large unilamellar vesicles. Güldütuna S; Deisinger B; Weiss A; Freisleben HJ; Zimmer G; Sipos P; Leuschner U Biochim Biophys Acta; 1997 Jun; 1326(2):265-74. PubMed ID: 9218557 [TBL] [Abstract][Full Text] [Related]
37. Preparation of monodisperse vesicles with variable size by dilution of mixed micellar solutions of bile salt and phosphatidylcholine. Schurtenberger P; Mazer N; Waldvogel S; Känzig W Biochim Biophys Acta; 1984 Aug; 775(1):111-4. PubMed ID: 6466656 [TBL] [Abstract][Full Text] [Related]
38. 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup. Cullis PR; De Kruyff B Biochim Biophys Acta; 1976 Jul; 436(3):523-40. PubMed ID: 952909 [TBL] [Abstract][Full Text] [Related]
39. Phase transitions of phospholipid single-wall vesicles and multilayers. Measurement by vibrational Raman spectroscopic frequency differences. Spiker RC; Levin IW Biochim Biophys Acta; 1976 May; 433(3):457-68. PubMed ID: 1276189 [TBL] [Abstract][Full Text] [Related]
40. Structural and morphological transition of long-chain phospholipid vesicles induced by mixing with short-chain phospholipid. Takajo Y; Matsuki H; Matsubara H; Tsuchiya K; Aratono M; Yamanaka M Colloids Surf B Biointerfaces; 2010 Apr; 76(2):571-6. PubMed ID: 20097547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]