These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26051862)

  • 1. Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons.
    Lin YT; Chung HC; Yang PH; Lin SY; Lin MF
    Phys Chem Chem Phys; 2015 Jul; 17(25):16545-52. PubMed ID: 26051862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curvature effects on electronic properties of armchair graphene nanoribbons without passivation.
    Chang SL; Wu BR; Yang PH; Lin MF
    Phys Chem Chem Phys; 2012 Dec; 14(47):16409-14. PubMed ID: 23132378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F; Gökoğlu G; Aktürk E
    J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature-Rich Geometric and Electronic Properties of Carbon Nanoscrolls.
    Lin SY; Chang SL; Chiang CR; Li WB; Liu HY; Lin MF
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34067250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkali-created rich properties in grapheme nanoribbons: Chemical bondings.
    Lin YT; Lin SY; Chiu YH; Lin MF
    Sci Rep; 2017 May; 7(1):1722. PubMed ID: 28496144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons.
    Huang YC; Chang CP; Lin MF
    Nanotechnology; 2007 Dec; 18(49):495401. PubMed ID: 20442470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation.
    Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls.
    Nhung Nguyen TT; Power SR; Karakachian H; Starke U; Tegenkamp C
    ACS Nano; 2023 Oct; 17(20):20345-20352. PubMed ID: 37788294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of the modulated magnetic fields on electronic structures of graphene nanoribbons.
    Wu JY; Chiu YH; Lien JY; Lin MF
    J Nanosci Nanotechnol; 2009 May; 9(5):3193-200. PubMed ID: 19452990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and electronic properties of graphene nanotube-nanoribbon hybrids.
    Lee CH; Yang CK; Lin MF; Chang CP; Su WS
    Phys Chem Chem Phys; 2011 Mar; 13(9):3925-31. PubMed ID: 21210053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-size effects on electronic structure and local properties in passivated AA-stacked bilayer armchair-edge graphene nanoribbons.
    Chen X; Shi Z; Xiang S; Song K; Zhou G
    J Phys Condens Matter; 2017 Mar; 29(8):085301. PubMed ID: 28000622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions.
    Tung Nguyen L; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.