BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26051919)

  • 1. Insights into cell ontogeny, age, and acute myeloid leukemia.
    Chaudhury SS; Morison JK; Gibson BE; Keeshan K
    Exp Hematol; 2015 Sep; 43(9):745-55. PubMed ID: 26051919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis.
    Eriksson A; Lennartsson A; Lehmann S
    Exp Hematol; 2015 Aug; 43(8):609-24. PubMed ID: 26118500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ordered acquisition of Class II and Class I mutations directs formation of human t(8;21) acute myelogenous leukemia stem cell.
    Shima T; Miyamoto T; Kikushige Y; Yuda J; Tochigi T; Yoshimoto G; Kato K; Takenaka K; Iwasaki H; Mizuno S; Goto N; Akashi K
    Exp Hematol; 2014 Nov; 42(11):955-65.e1-5. PubMed ID: 25101977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations.
    Harada Y; Harada H
    J Cell Physiol; 2009 Jul; 220(1):16-20. PubMed ID: 19334039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and epigenetic similarities and differences between childhood and adult AML.
    Juhl-Christensen C; Ommen HB; Aggerholm A; Lausen B; Kjeldsen E; Hasle H; Hokland P
    Pediatr Blood Cancer; 2012 Apr; 58(4):525-31. PubMed ID: 22331798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defective in vitro growth of primitive hematopoietic cells from pediatric patients with acute myeloid leukemia.
    Dorantes-Acosta E; Chávez-González A; Santos JI; Medina-Sanson A; Mayani H
    Pediatr Blood Cancer; 2008 Dec; 51(6):741-6. PubMed ID: 18680148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aldehyde dehydrogenases in acute myeloid leukemia.
    Smith C; Gasparetto M; Humphries K; Pollyea DA; Vasiliou V; Jordan CT
    Ann N Y Acad Sci; 2014 Mar; 1310():58-68. PubMed ID: 24641679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular pathogenesis of acute myeloid leukemia.
    Steffen B; Müller-Tidow C; Schwäble J; Berdel WE; Serve H
    Crit Rev Oncol Hematol; 2005 Nov; 56(2):195-221. PubMed ID: 16236521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulators CITED2 and PU.1 cooperate in maintaining hematopoietic stem cells.
    Mattes K; Geugien M; Korthuis PM; Brouwers-Vos AZ; Fehrmann RSN; Todorova TI; Steidl U; Vellenga E; Schepers H
    Exp Hematol; 2019 May; 73():38-49.e7. PubMed ID: 30986495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The increasing genomic complexity of acute myeloid leukemia.
    Rowe JM
    Best Pract Res Clin Haematol; 2014; 27(3-4):209-13. PubMed ID: 25455268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive activation of Flt3 and STAT5A enhances self-renewal and alters differentiation of hematopoietic stem cells.
    Moore MA; Dorn DC; Schuringa JJ; Chung KY; Morrone G
    Exp Hematol; 2007 Apr; 35(4 Suppl 1):105-16. PubMed ID: 17379095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of sPRDM16 coupled with loss of p53 induces myeloid leukemias in mice.
    Shing DC; Trubia M; Marchesi F; Radaelli E; Belloni E; Tapinassi C; Scanziani E; Mecucci C; Crescenzi B; Lahortiga I; Odero MD; Zardo G; Gruszka A; Minucci S; Di Fiore PP; Pelicci PG
    J Clin Invest; 2007 Dec; 117(12):3696-707. PubMed ID: 18037989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AML1/RUNX1 mutations are infrequent, but related to AML-M0, acquired trisomy 21, and leukemic transformation in pediatric hematologic malignancies.
    Taketani T; Taki T; Takita J; Tsuchida M; Hanada R; Hongo T; Kaneko T; Manabe A; Ida K; Hayashi Y
    Genes Chromosomes Cancer; 2003 Sep; 38(1):1-7. PubMed ID: 12874780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytogenetics in benzene-associated myelodysplastic syndromes and acute myeloid leukemia: new insights into a disease continuum.
    Irons RD; Kerzic PJ
    Ann N Y Acad Sci; 2014 Mar; 1310():84-8. PubMed ID: 24611724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association.
    Gebhard C; Glatz D; Schwarzfischer L; Wimmer J; Stasik S; Nuetzel M; Heudobler D; Andreesen R; Ehninger G; Thiede C; Rehli M
    Leukemia; 2019 Jan; 33(1):26-36. PubMed ID: 29925905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miRNAs in acute myeloid leukemia.
    Liao Q; Wang B; Li X; Jiang G
    Oncotarget; 2017 Jan; 8(2):3666-3682. PubMed ID: 27705921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interleukin-3-mediated regulation of β-catenin in myeloid transformation and acute myeloid leukemia.
    Sadras T; Perugini M; Kok CH; Iarossi DG; Heatley SL; Brumatti G; Samuel MS; To LB; Lewis ID; Lopez AF; Ekert PG; Ramshaw HS; D'Andrea RJ
    J Leukoc Biol; 2014 Jul; 96(1):83-91. PubMed ID: 24598054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic Abnormalities in Acute Myeloid Leukemia and Leukemia Stem Cells.
    Xu J; Hang X; Wu B; Chen C; Liu Y
    Adv Exp Med Biol; 2019; 1143():173-189. PubMed ID: 31338820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias.
    Testa U; Pelosi E
    Leuk Lymphoma; 2015 May; 56(5):1466-74. PubMed ID: 25242094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenic Mechanisms in Acute Myeloid Leukemia.
    Chakraborty S; Park CY
    Curr Treat Options Oncol; 2022 Nov; 23(11):1522-1534. PubMed ID: 36190670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.