These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2605206)

  • 1. Helix formation and stability in a signal sequence.
    Bruch MD; McKnight CJ; Gierasch LM
    Biochemistry; 1989 Oct; 28(21):8554-61. PubMed ID: 2605206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of helix stability in wild-type and mutant LamB signal sequences.
    Bruch MD; Gierasch LM
    J Biol Chem; 1990 Mar; 265(7):3851-8. PubMed ID: 2406265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments.
    Rizo J; Blanco FJ; Kobe B; Bruch MD; Gierasch LM
    Biochemistry; 1993 May; 32(18):4881-94. PubMed ID: 8387821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the conformational roles of signal sequences: synthesis and conformational analysis of lambda receptor protein wild-type and mutant signal peptides.
    Briggs MS; Gierasch LM
    Biochemistry; 1984 Jul; 23(14):3111-4. PubMed ID: 6380582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational requirement of signal sequences functioning in yeast: circular dichroism and 1H nuclear magnetic resonance studies of synthetic peptides.
    Yamamoto Y; Ohkubo T; Kohara A; Tanaka T; Tanaka T; Kikuchi M
    Biochemistry; 1990 Sep; 29(38):8998-9006. PubMed ID: 2271573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study.
    Chupin V; Killian JA; Breg J; de Jongh HH; Boelens R; Kaptein R; de Kruijff B
    Biochemistry; 1995 Sep; 34(36):11617-24. PubMed ID: 7547893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin.
    Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ
    Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational and membrane-binding properties of a signal sequence are largely unaltered by its adjacent mature region.
    McKnight CJ; Stradley SJ; Jones JD; Gierasch LM
    Proc Natl Acad Sci U S A; 1991 Jul; 88(13):5799-803. PubMed ID: 2062859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-bound conformation of a signal peptide: a transferred nuclear Overhauser effect analysis.
    Wang Z; Jones JD; Rizo J; Gierasch LM
    Biochemistry; 1993 Dec; 32(50):13991-9. PubMed ID: 8268177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and nonfunctional LamB signal sequences can be distinguished by their biophysical properties.
    McKnight CJ; Briggs MS; Gierasch LM
    J Biol Chem; 1989 Oct; 264(29):17293-7. PubMed ID: 2677003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Import, processing, and two-dimensional NMR structure of a linker-deleted signal peptide of rat liver mitochondrial aldehyde dehydrogenase.
    Thornton K; Wang Y; Weiner H; Gorenstein DG
    J Biol Chem; 1993 Sep; 268(26):19906-14. PubMed ID: 8366128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture.
    Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB
    Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational study of signal peptides of the LamB protein.
    Perez JJ; Ricart JM; Masip J
    Int J Biol Macromol; 1991 Aug; 13(4):241-6. PubMed ID: 1777432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo function and membrane binding properties are correlated for Escherichia coli lamB signal peptides.
    Briggs MS; Gierasch LM; Zlotnick A; Lear JD; DeGrado WF
    Science; 1985 May; 228(4703):1096-9. PubMed ID: 3158076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of wild-type and mutant signal sequences of Escherichia coli ribose binding protein.
    Yi GS; Choi BS; Kim H
    Biophys J; 1994 May; 66(5):1604-11. PubMed ID: 8061209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding propensities of peptide fragments of myoglobin.
    Reymond MT; Merutka G; Dyson HJ; Wright PE
    Protein Sci; 1997 Mar; 6(3):706-16. PubMed ID: 9070453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational mapping of the N-terminal peptide of HIV-1 gp41 in membrane environments using (13)C-enhanced Fourier transform infrared spectroscopy.
    Gordon LM; Mobley PW; Pilpa R; Sherman MA; Waring AJ
    Biochim Biophys Acta; 2002 Feb; 1559(2):96-120. PubMed ID: 11853678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence analysis of tryptophan-containing variants of the LamB signal sequence upon insertion into a lipid bilayer.
    McKnight CJ; Rafalski M; Gierasch LM
    Biochemistry; 1991 Jun; 30(25):6241-6. PubMed ID: 2059631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain.
    Ruan KH; Li D; Ji J; Lin YZ; Gao X
    Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of synthetic helical peptides using circular dichroism and nuclear magnetic resonance.
    Bradley EK; Thomason JF; Cohen FE; Kosen PA; Kuntz ID
    J Mol Biol; 1990 Oct; 215(4):607-22. PubMed ID: 2231722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.