BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 2605210)

  • 1. Ruthenium-iron hybrid hemoglobins as a model for partially liganded hemoglobin: oxygen equilibrium curves and resonance Raman spectra.
    Ishimori K; Tsuneshige A; Imai K; Morishima I
    Biochemistry; 1989 Oct; 28(21):8603-9. PubMed ID: 2605210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruthenium-iron hybrid hemoglobins as a model for partially liganded hemoglobin: NMR studies of their tertiary and quaternary structures.
    Ishimori K; Morishima I
    Biochemistry; 1988 May; 27(11):4060-6. PubMed ID: 3415973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP.
    Kanaori K; Tajiri Y; Tsuneshige A; Ishigami I; Ogura T; Tajima K; Neya S; Yonetani T
    Biochim Biophys Acta; 2011 Oct; 1807(10):1253-61. PubMed ID: 21703224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of chemically modified Ni(II)-Fe(II) hybrid hemoglobins. Ni(II) protoporphyrin IX as a model for a permanent deoxy-heme.
    Shibayama N; Morimoto H; Kitagawa T
    J Mol Biol; 1986 Nov; 192(2):331-6. PubMed ID: 3560220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotropically shifted NMR resonances for the proximal histidyl imidazole NH protons in cobalt hemoglobin and iron-cobalt hybrid hemoglobins. Binding of the proximal histidine toward porphyrin metal ion in the intermediate state of cooperative ligand binding.
    Inubushi T; Ikeda-Saito M; Yonetani T
    Biochemistry; 1983 Jun; 22(12):2904-7. PubMed ID: 6871170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced conformational changes of the Fe(2+)-N epsilon (His F8) linkage in deoxyhemoglobin trout IV detected by the Raman active Fe(2+)-N epsilon (His F8) stretching mode.
    Bosenbeck M; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1992 Jan; 61(1):31-41. PubMed ID: 1540697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen equilibrium study and light absorption spectra of Ni(II)-Fe(II) hybrid hemoglobins.
    Shibayama N; Morimoto H; Miyazaki G
    J Mol Biol; 1986 Nov; 192(2):323-9. PubMed ID: 3560219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron paramagnetic resonance study on crosslinked asymmetric Fe(II)-Co(II) hybrids of hemoglobin.
    Kitagishi K; D'Ambrosio C; Yonetani T
    Arch Biochem Biophys; 1988 Jul; 264(1):176-83. PubMed ID: 2840023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity between Two α Subunits of α
    Nagatomo S; Saito K; Yamamoto K; Ogura T; Kitagawa T; Nagai M
    Biochemistry; 2017 Nov; 56(46):6125-6136. PubMed ID: 29064674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron paramagnetic resonance studies on cobalt hemoglobin, iron-cobalt hybrid hemoglobins, and their related model complexes. Characterization of proximal histidine binding to porphyrin cobalt(II) ion and its transition associated with subunit interaction.
    Inubushi T; Yonetani T
    Biochemistry; 1983 Apr; 22(8):1894-900. PubMed ID: 6303396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The porphyrin-iron hybrid hemoglobins. Absence of the Fe-His bonds in one type of subunits favors a deoxy-like structure with low oxygen affinity.
    Fujii M; Hori H; Miyazaki G; Morimoto H; Yonetani T
    J Biol Chem; 1993 Jul; 268(21):15386-93. PubMed ID: 8340369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme.
    Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T
    Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The iron-proximal histidine linkage and protein control of oxygen binding in hemoglobin. A transient Raman study.
    Friedman JM; Scott TW; Stepnoski RA; Ikeda-Saito M; Yonetani T
    J Biol Chem; 1983 Sep; 258(17):10564-72. PubMed ID: 6885793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Origin of Cooperative Oxygen Binding of Human Adult Hemoglobin: Different Roles of the α and β Subunits in the α2β2 Tetramer.
    Nagatomo S; Nagai Y; Aki Y; Sakurai H; Imai K; Mizusawa N; Ogura T; Kitagawa T; Nagai M
    PLoS One; 2015; 10(8):e0135080. PubMed ID: 26244770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect.
    Nagatomo S; Okumura M; Saito K; Ogura T; Kitagawa T; Nagai M
    Biochemistry; 2017 Mar; 56(9):1261-1273. PubMed ID: 28199095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in Fe(II)-N epsilon(His-F8) stretching frequencies between deoxyhemoglobins in the two alternative quaternary structures.
    Nagai K; Kitagawa T
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2033-7. PubMed ID: 6929536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new way to understand quaternary structure changes of hemoglobin upon ligand binding on the basis of UV-resonance Raman evaluation of intersubunit interactions.
    Nagatomo S; Nagai M; Kitagawa T
    J Am Chem Soc; 2011 Jul; 133(26):10101-10. PubMed ID: 21615086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-histidine stretching vibration in the deoxy state of insect hemoglobins with different O2 affinities and Bohr effects.
    Kerr EA; Yu NT; Gersonde K; Parish DW; Smith KM
    J Biol Chem; 1985 Oct; 260(23):12665-9. PubMed ID: 4044602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.