These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 26052422)

  • 1. Hybrid photocathodes for solar fuel production: coupling molecular fuel-production catalysts with solid-state light harvesting and conversion technologies.
    Cedeno D; Krawicz A; Moore GF
    Interface Focus; 2015 Jun; 5(3):20140085. PubMed ID: 26052422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies.
    Reyes Cruz EA; Nishiori D; Wadsworth BL; Nguyen NP; Hensleigh LK; Khusnutdinova D; Beiler AM; Moore GF
    Chem Rev; 2022 Nov; 122(21):16051-16109. PubMed ID: 36173689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.
    Xu Y; Li A; Yao T; Ma C; Zhang X; Shah JH; Han H
    ChemSusChem; 2017 Nov; 10(22):4277-4305. PubMed ID: 29105988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular Homogeneous Chromophore-Catalyst Assemblies.
    Mulfort KL; Utschig LM
    Acc Chem Res; 2016 May; 49(5):835-43. PubMed ID: 27104312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies.
    Frischmann PD; Mahata K; Würthner F
    Chem Soc Rev; 2013 Feb; 42(4):1847-70. PubMed ID: 22850767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar energy for electricity and fuels.
    Inganäs O; Sundström V
    Ambio; 2016 Jan; 45 Suppl 1(Suppl 1):S15-23. PubMed ID: 26667056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.
    Pang H; Masuda T; Ye J
    Chem Asian J; 2018 Jan; 13(2):127-142. PubMed ID: 29193762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation.
    Kärkäs MD; Johnston EV; Verho O; Akermark B
    Acc Chem Res; 2014 Jan; 47(1):100-11. PubMed ID: 23957573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production.
    Willkomm J; Orchard KL; Reynal A; Pastor E; Durrant JR; Reisner E
    Chem Soc Rev; 2016 Jan; 45(1):9-23. PubMed ID: 26584204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Inorganic Assemblies for Artificial Photosynthesis.
    Kim W; Edri E; Frei H
    Acc Chem Res; 2016 Sep; 49(9):1634-45. PubMed ID: 27575376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoarray Structures for Artificial Photosynthesis.
    Tian L; Xin Q; Zhao C; Xie G; Akram MZ; Wang W; Ma R; Jia X; Guo B; Gong JR
    Small; 2021 Sep; 17(38):e2006530. PubMed ID: 33896110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield.
    Purchase RL; de Groot HJ
    Interface Focus; 2015 Jun; 5(3):20150014. PubMed ID: 26052428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introductory lecture: systems materials engineering approach for solar-to-chemical conversion.
    Liu C; Yang P
    Faraday Discuss; 2014; 176():9-16. PubMed ID: 25639766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.