BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 2605258)

  • 1. Separate and shared lysosomal transport of branched and aromatic dipolar amino acids.
    Stewart BH; Collarini EJ; Pisoni RL; Christensen HN
    Biochim Biophys Acta; 1989 Dec; 987(2):145-53. PubMed ID: 2605258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of the aromatic amino acids into isolated rat liver cells. Properties of uptake by two distinct systems.
    Salter M; Knowles RG; Pogson CI
    Biochem J; 1986 Jan; 233(2):499-506. PubMed ID: 3954748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple pathways for L-methionine transport in brush-border membrane vesicles from chicken jejunum.
    Soriano-García JF; Torras-Llort M; Ferrer R; Moreto M
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):527-39. PubMed ID: 9575301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Important differences in cationic amino acid transport by lysosomal system c and system y+ of the human fibroblast.
    Pisoni RL; Thoene JG; Lemons RM; Christensen HN
    J Biol Chem; 1987 Nov; 262(31):15011-8. PubMed ID: 3499437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles.
    Kudo Y; Boyd CA
    J Physiol; 2001 Mar; 531(Pt 2):405-16. PubMed ID: 11230513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a transport system for anionic amino acids in human fibroblast lysosomes.
    Collarini EJ; Pisoni RL; Christensen HN
    Biochim Biophys Acta; 1989 Dec; 987(2):139-44. PubMed ID: 2574994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of carrier-mediated transport systems for small neutral amino acids in human fibroblast lysosomes.
    Pisoni RL; Flickinger KS; Thoene JG; Christensen HN
    J Biol Chem; 1987 May; 262(13):6010-7. PubMed ID: 3106350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of Na+-independent 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid and L-leucine transport in isolated rat hepatocytes in primary culture.
    Handlogten ME; Weissbach L; Kilberg MS
    Biochem Biophys Res Commun; 1982 Jan; 104(1):307-13. PubMed ID: 7073676
    [No Abstract]   [Full Text] [Related]  

  • 9. Synthesis and transport applications of 3-aminobicyclo[3.2.1] octane-3-carboxylic acids.
    Christensen HN; Handlogten ME; Vadgama JV; de la Cuesta E; Ballesteros P; Trigo GG; Avendaño C
    J Med Chem; 1983 Oct; 26(10):1374-8. PubMed ID: 6413692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny and plasma-membrane domain localization of amino acid transport system L in rat liver.
    Novak DA; Kilberg MS; Beveridge MJ
    Biochem J; 1994 Aug; 301 ( Pt 3)(Pt 3):671-4. PubMed ID: 8053892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of a lysosomal membrane transport system for tyrosine and other neutral amino acids in rat thyroid cells.
    Bernar J; Tietze F; Kohn LD; Bernardini I; Harper GS; Grollman EF; Gahl WA
    J Biol Chem; 1986 Dec; 261(36):17107-12. PubMed ID: 3782156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of 2-aminobicyclo[3.2.1]octane-2-carboxylic acid with the amino acid transport systems of the sarcoma 37 murine ascites tumor cell.
    Elliott MS; Matthews RH; Minton JP; Zand R
    Biochemistry; 1981 Sep; 20(18):5105-8. PubMed ID: 7295668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of benzenoid amino acids by system T and four broad scope systems in preimplantation mouse conceptuses.
    Van Winkle LJ; Mann DF; Campione AL; Farrington BH
    Biochim Biophys Acta; 1990 Sep; 1027(3):268-77. PubMed ID: 2397236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further studies on amino acid transport in murine P388 leukemia cells in vitro. Presence of system y+.
    Lazarus P; Panasci LC
    Biochim Biophys Acta; 1987 Apr; 898(2):154-8. PubMed ID: 3103685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles.
    Blitzer BL; Bueler RL
    Am J Physiol; 1985 Jul; 249(1 Pt 1):G120-4. PubMed ID: 4014461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosine transport in a human melanoma cell line as a basis for selective transport of cytotoxic analogues.
    Pankovich JM; Jimbow K
    Biochem J; 1991 Dec; 280 ( Pt 3)(Pt 3):721-5. PubMed ID: 1764036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl]-L-methionine.
    Langen KJ; Mühlensiepen H; Holschbach M; Hautzel H; Jansen P; Coenen HH
    J Nucl Med; 2000 Jul; 41(7):1250-5. PubMed ID: 10914918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of tryptophan transport in human placental brush-border membrane vesicles.
    Ganapathy ME; Leibach FH; Mahesh VB; Howard JC; Devoe LD; Ganapathy V
    Biochem J; 1986 Aug; 238(1):201-8. PubMed ID: 3800932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Na(+)-independent glutamine transport in rat liver.
    Pacitti AJ; Inoue Y; Souba WW
    Am J Physiol; 1993 Jul; 265(1 Pt 1):G90-8. PubMed ID: 8338176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for two Na+-independent neutral amino acid transport systems in primary cultures of rat hepatocytes. Time-dependent changes in activity.
    Weissbach L; Handlogten ME; Christensen HN; Kilberg MS
    J Biol Chem; 1982 Oct; 257(20):12006-11. PubMed ID: 7118928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.