These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26052631)

  • 1. Charge transport through a semiconductor quantum dot-ring nanostructure.
    Kurpas M; Kędzierska B; Janus-Zygmunt I; Gorczyca-Goraj A; Wach E; Zipper E; Maśka MM
    J Phys Condens Matter; 2015 Jul; 27(26):265801. PubMed ID: 26052631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium transport through a vertical quantum dot in the absence of spin-flip energy relaxation.
    Fujisawa T; Austing DG; Tokura Y; Hirayama Y; Tarucha S
    Phys Rev Lett; 2002 Jun; 88(23):236802. PubMed ID: 12059387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric properties of a double-dot system in serial configuration within the Coulomb blockade regime.
    Zimbovskaya NA
    J Chem Phys; 2020 Sep; 153(12):124712. PubMed ID: 33003716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge and heat current rectification by a double-dot system within the Coulomb blockade regime.
    Zimbovskaya NA
    J Phys Condens Matter; 2020 May; 32(32):. PubMed ID: 32217812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and current noise characteristics of a T-shape double-quantum-dot system.
    Brown K; Crisan M; Tifrea I
    J Phys Condens Matter; 2009 May; 21(21):215604. PubMed ID: 21825553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple quantum dots as charge rectifiers.
    Busl M; Platero G
    J Phys Condens Matter; 2012 Apr; 24(15):154001. PubMed ID: 22442135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-electron transport in electrically tunable nanomagnets.
    Fernández-Rossier J; Aguado R
    Phys Rev Lett; 2007 Mar; 98(10):106805. PubMed ID: 17358557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron cotunneling in a semiconductor quantum dot.
    De Franceschi S; Sasaki S; Elzerman JM; van der Wiel WG; Tarucha S; Kouwenhoven LP
    Phys Rev Lett; 2001 Jan; 86(5):878-81. PubMed ID: 11177963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-range transport in an assembly of ZnO quantum dots: the effects of quantum confinement, Coulomb repulsion and structural disorder.
    Roest AL; Germeau A; Kelly JJ; Vanmaekelbergh D; Allan G; Meulenkamp EA
    Chemphyschem; 2003 Sep; 4(9):959-66. PubMed ID: 14562441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercurrent reversal in quantum dots.
    van Dam JA; Nazarov YV; Bakkers EP; De Franceschi S; Kouwenhoven LP
    Nature; 2006 Aug; 442(7103):667-70. PubMed ID: 16900196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe open-boundary conditions approach.
    Pertsova A; Stamenova M; Sanvito S
    J Phys Condens Matter; 2013 Mar; 25(10):105501. PubMed ID: 23380702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-related current suppression in a semiconductor quantum dot spin-diode structure.
    Hamaya K; Kitabatake M; Shibata K; Jung M; Ishida S; Taniyama T; Hirakawa K; Arakawa Y; Machida T
    Phys Rev Lett; 2009 Jun; 102(23):236806. PubMed ID: 19658960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dot-ring nanostructure: Rigorous analysis of many-electron effects.
    Biborski A; Kądzielawa AP; Gorczyca-Goraj A; Zipper E; Maśka MM; Spałek J
    Sci Rep; 2016 Jul; 6():29887. PubMed ID: 27431436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bias spectroscopy and simultaneous single-electron transistor charge state detection of Si:P double dots.
    Mitic M; Petersson KD; Cassidy MC; Starrett RP; Gauja E; Ferguson AJ; Yang C; Jamieson DN; Clark RG; Dzurak AS
    Nanotechnology; 2008 Jul; 19(26):265201. PubMed ID: 21828673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strongly Correlated Charge Transport in Silicon Metal-Oxide-Semiconductor Field-Effect Transistor Quantum Dots.
    Seo M; Roulleau P; Roche P; Glattli DC; Sanquer M; Jehl X; Hutin L; Barraud S; Parmentier FD
    Phys Rev Lett; 2018 Jul; 121(2):027701. PubMed ID: 30085716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schemes for Single Electron Transistor Based on Double Quantum Dot Islands Utilizing a Graphene Nanoscroll, Carbon Nanotube and Fullerene.
    Khademhosseini V; Dideban D; Ahmadi MT; Heidari H
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-terminal quantum-dot refrigerators.
    Zhang Y; Lin G; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052118. PubMed ID: 26066130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.