BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26053039)

  • 1. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia.
    Selin C; Stietz MS; Blanchard JE; Gehrke SS; Bernard S; Hall DG; Brown ED; Cardona ST
    PLoS One; 2015; 10(6):e0128587. PubMed ID: 26053039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia.
    Mil-Homens D; Bernardes N; Fialho AM
    FEMS Microbiol Lett; 2012 Mar; 328(1):61-9. PubMed ID: 22150831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive Fitness of Essential Gene Knockdowns Reveals a Broad-Spectrum Antibacterial Inhibitor of the Cell Division Protein FtsZ.
    Hogan AM; Scoffone VC; Makarov V; Gislason AS; Tesfu H; Stietz MS; Brassinga AKC; Domaratzki M; Li X; Azzalin A; Biggiogera M; Riabova O; Monakhova N; Chiarelli LR; Riccardi G; Buroni S; Cardona ST
    Antimicrob Agents Chemother; 2018 Dec; 62(12):. PubMed ID: 30297366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia.
    Stietz MS; Lopez C; Osifo O; Tolmasky ME; Cardona ST
    Can J Microbiol; 2017 Oct; 63(10):857-863. PubMed ID: 28817787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the Nonmevalonate Pathway in Burkholderia cenocepacia Increases Susceptibility to Certain β-Lactam Antibiotics.
    Sass A; Everaert A; Van Acker H; Van den Driessche F; Coenye T
    Antimicrob Agents Chemother; 2018 May; 62(5):. PubMed ID: 29439968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of synergists that potentiate the action of polymyxin B against Burkholderia cenocepacia.
    Loutet SA; El-Halfawy OM; Jassem AN; López JM; Medarde AF; Speert DP; Davies JE; Valvano MA
    Int J Antimicrob Agents; 2015 Oct; 46(4):376-80. PubMed ID: 26187366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput screening of model bacteria.
    Zlitni S; Blanchard JE; Brown ED
    Methods Mol Biol; 2009; 486():13-27. PubMed ID: 19347613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular approaches to pathogenesis study of Burkholderia cenocepacia, an important cystic fibrosis opportunistic bacterium.
    Bazzini S; Udine C; Riccardi G
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):887-95. PubMed ID: 21997606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive Growth Enhances Conditional Growth Mutant Sensitivity to Antibiotics and Exposes a Two-Component System as an Emerging Antibacterial Target in Burkholderia cenocepacia.
    Gislason AS; Choy M; Bloodworth RA; Qu W; Stietz MS; Li X; Zhang C; Cardona ST
    Antimicrob Agents Chemother; 2017 Jan; 61(1):. PubMed ID: 27799222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity.
    Kamal F; Dennis JJ
    Appl Environ Microbiol; 2015 Feb; 81(3):1132-8. PubMed ID: 25452284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and characterization of a murine lung infection model for the evaluation of novel therapeutics against Burkholderia cenocepacia.
    Vanhoutte B; Cappoen D; Maira BM; Cools F; Torfs E; Coenye T; Martinet W; Caljon G; Maes L; Delputte P; Cos P
    J Microbiol Methods; 2017 Aug; 139():181-188. PubMed ID: 28587856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of a novel whole animal HTS technology platform for melioidosis drug discovery.
    Lakshmanan U; Yap A; Fulwood J; Yichun L; Hoon SS; Lim J; Ting A; Sem XH; Kreisberg JF; Tan P; Tan G; Flotow H
    Comb Chem High Throughput Screen; 2014; 17(9):790-803. PubMed ID: 25329838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient and novel screening model for assessing the bioactivity of extracts against multidrug-resistant Pseudomonas aeruginosa using Caenorhabditis elegans.
    Zhou YM; Shao L; Li JA; Han LZ; Cai WJ; Zhu CB; Chen DJ
    Biosci Biotechnol Biochem; 2011; 75(9):1746-51. PubMed ID: 21897025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of recombinant human lactoferrin on growth and the antibiotic susceptibility of the cystic fibrosis pathogen Burkholderia cepacia complex when cultured planktonically or as biofilms.
    Caraher EM; Gumulapurapu K; Taggart CC; Murphy P; McClean S; Callaghan M
    J Antimicrob Chemother; 2007 Sep; 60(3):546-54. PubMed ID: 17595284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Extended Storage of Chlorhexidine Gluconate and Benzalkonium Chloride Solutions on the Viability of Burkholderia cenocepacia.
    Ahn Y; Kim JM; Lee YJ; LiPuma J; Hussong D; Marasa B; Cerniglia C
    J Microbiol Biotechnol; 2017 Dec; 27(12):2211-2220. PubMed ID: 29032643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical Characterization of Glutamate Racemase-A New Candidate Drug Target against Burkholderia cenocepacia Infections.
    Israyilova A; Buroni S; Forneris F; Scoffone VC; Shixaliyev NQ; Riccardi G; Chiarelli LR
    PLoS One; 2016; 11(11):e0167350. PubMed ID: 27898711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MtvR is a global small noncoding regulatory RNA in Burkholderia cenocepacia.
    Ramos CG; Grilo AM; da Costa PJ; Feliciano JR; Leitão JH
    J Bacteriol; 2013 Aug; 195(16):3514-23. PubMed ID: 23729649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.
    Yudistira H; McClarty L; Bloodworth RA; Hammond SA; Butcher H; Mark BL; Cardona ST
    Microb Pathog; 2011 Sep; 51(3):186-93. PubMed ID: 21511027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence.
    Drevinek P; Mahenthiralingam E
    Clin Microbiol Infect; 2010 Jul; 16(7):821-30. PubMed ID: 20880411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin E Increases Antimicrobial Sensitivity by Inhibiting Bacterial Lipocalin Antibiotic Binding.
    Naguib MM; Valvano MA
    mSphere; 2018 Dec; 3(6):. PubMed ID: 30541778
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.