BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2605310)

  • 1. A rigorous mathematical treatment for the excluded volume effect in Monte Carlo simulations of polymeric chains.
    Yeramian E; Schaeffer F; Caudron B; Claverie P; Buc H
    Biopolymers; 1989 Dec; 28(12):2059-70. PubMed ID: 2605310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-recognition and aggregation between diblock (charged/neutral) polyelectrolytes by Monte Carlo simulations.
    Feng J; Ruckenstein E
    J Chem Phys; 2006 Mar; 124(12):124913. PubMed ID: 16599731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Studies on the coil-globule transition by the Monte-Carlo method].
    Birshteĭn TM; Gridnev VN; Skvortsov AM
    Mol Biol (Mosk); 1981; 15(2):394-402. PubMed ID: 7242536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of protein-induced structural changes in closed circular DNA.
    Zhang P; Tobias I; Olson WK
    J Mol Biol; 1994 Sep; 242(3):271-90. PubMed ID: 8089847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.
    Liu Z; Chan HS
    J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the conformational properties of polymeric chains of differing rigidity by the Monte-Carlo method.
    El'yashevich AM; Skvortsov AM
    Mol Biol; 1971; 5(2):159-67. PubMed ID: 5154812
    [No Abstract]   [Full Text] [Related]  

  • 7. Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo.
    Zhang J; Kou SC; Liu JS
    J Chem Phys; 2007 Jun; 126(22):225101. PubMed ID: 17581081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation and molecular theory of tethered polyelectrolytes.
    Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I
    J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crowding effects in binary mixtures of rod-like and spherical particles.
    Lago S; Cuetos A; Martínez-Haya B; Rull LF
    J Mol Recognit; 2004; 17(5):417-25. PubMed ID: 15362100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrifugation equilibrium for spheres and spherocylinders.
    Martins LS; Tavares FW; Peçanha RP; Castier M
    J Colloid Interface Sci; 2005 Jan; 281(2):360-7. PubMed ID: 15571691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments.
    Gebe JA; Delrow JJ; Heath PJ; Fujimoto BS; Stewart DW; Schurr JM
    J Mol Biol; 1996 Sep; 262(2):105-28. PubMed ID: 8831783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of protein folding in the presence of residue-specific binding sites.
    Rossinsky E; Srebnik S
    Biopolymers; 2005 Dec; 79(5):259-68. PubMed ID: 16134169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):338-52. PubMed ID: 8208726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo and modified Tanford-Kirkwood results for macromolecular electrostatics calculations.
    de Carvalho SJ; Ghiotto RC; da Silva FL
    J Phys Chem B; 2006 May; 110(17):8832-9. PubMed ID: 16640442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries.
    Oliver M; Gladwish A; Staruch R; Craig J; Gaede S; Chen J; Wong E
    Phys Med Biol; 2008 Nov; 53(22):6419-36. PubMed ID: 18941277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of amphiphilic nanoparticle self-assembly.
    Davis JR; Panagiotopoulos AZ
    J Chem Phys; 2008 Nov; 129(19):194706. PubMed ID: 19026080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpreting size-exclusion data for highly branched biopolymers by reverse monte carlo simulations.
    Watts CJ; Gray-Weale A; Gilbert RG
    Biomacromolecules; 2007 Feb; 8(2):455-63. PubMed ID: 17291069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes of peptides at solid/liquid interfaces: a Monte Carlo study.
    Mungikar AA; Forciniti D
    Biomacromolecules; 2004; 5(6):2147-59. PubMed ID: 15530028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA; Breslauer KJ; Olson WK
    Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2009 Mar; 1216(12):2320-31. PubMed ID: 19203762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.