These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26053175)

  • 21. Evaluation of heterogeneity and heterogeneity interval estimators in random-effects meta-analysis of the standardized mean difference in education and psychology.
    Boedeker P; Henson RK
    Psychol Methods; 2020 Jun; 25(3):346-364. PubMed ID: 31599614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing Heterogeneity in Random-Effects Meta-analysis.
    Langan D
    Methods Mol Biol; 2022; 2345():67-89. PubMed ID: 34550584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bayesian estimation in random effects meta-analysis using a non-informative prior.
    Bodnar O; Link A; Arendacká B; Possolo A; Elster C
    Stat Med; 2017 Jan; 36(2):378-399. PubMed ID: 27790722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multistep estimators of the between-study covariance matrix under the multivariate random-effects model for meta-analysis.
    Jackson D; Viechtbauer W; van Aert RCM
    Stat Med; 2024 Feb; 43(4):756-773. PubMed ID: 38110725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of between-trial variance in sequential meta-analyses: a simulation study.
    Novianti PW; Roes KC; van der Tweel I
    Contemp Clin Trials; 2014 Jan; 37(1):129-38. PubMed ID: 24321246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of heterogeneity variance estimators in combining results of studies.
    Sidik K; Jonkman JN
    Stat Med; 2007 Apr; 26(9):1964-81. PubMed ID: 16955539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Do pooled estimates from orthodontic meta-analyses change depending on the meta-analysis approach? A meta-epidemiological study.
    Tatas Z; Koutsiouroumpa O; Seehra J; Mavridis D; Pandis N
    Eur J Orthod; 2023 Nov; 45(6):722-730. PubMed ID: 37435902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Key concepts in clinical epidemiology: detecting and dealing with heterogeneity in meta-analyses.
    Cordero CP; Dans AL
    J Clin Epidemiol; 2021 Feb; 130():149-151. PubMed ID: 33483004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis.
    Veroniki AA; Jackson D; Bender R; Kuss O; Langan D; Higgins JPT; Knapp G; Salanti G
    Res Synth Methods; 2019 Mar; 10(1):23-43. PubMed ID: 30129707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bias and precision of methods for estimating the difference in restricted mean survival time from an individual patient data meta-analysis.
    Lueza B; Rotolo F; Bonastre J; Pignon JP; Michiels S
    BMC Med Res Methodol; 2016 Mar; 16():37. PubMed ID: 27025706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The exact distribution of Cochran's heterogeneity statistic in one-way random effects meta-analysis.
    Biggerstaff BJ; Jackson D
    Stat Med; 2008 Dec; 27(29):6093-110. PubMed ID: 18781561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interval estimation of the overall treatment effect in a meta-analysis of a few small studies with zero events.
    Pateras K; Nikolakopoulos S; Mavridis D; Roes KCB
    Contemp Clin Trials Commun; 2018 Mar; 9():98-107. PubMed ID: 29696231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation.
    Partlett C; Riley RD
    Stat Med; 2017 Jan; 36(2):301-317. PubMed ID: 27714841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient two-step multivariate random effects meta-analysis of individual participant data for longitudinal clinical trials using mixed effects models.
    Noma H; Maruo K; Gosho M; Levine SZ; Goldberg Y; Leucht S; Furukawa TA
    BMC Med Res Methodol; 2019 Feb; 19(1):33. PubMed ID: 30764757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies.
    Röver C; Knapp G; Friede T
    BMC Med Res Methodol; 2015 Nov; 15():99. PubMed ID: 26573817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Meta-analysis of studies with missing data.
    Yuan Y; Little RJ
    Biometrics; 2009 Jun; 65(2):487-96. PubMed ID: 18565168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Jointly pooling aggregated effect sizes and their standard errors from studies with continuous clinical outcomes.
    Almalik O; Zhan Z; Heuvel ERVD
    Biom J; 2022 Oct; 64(7):1340-1360. PubMed ID: 35754152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methods for evidence synthesis in the case of very few studies.
    Bender R; Friede T; Koch A; Kuss O; Schlattmann P; Schwarzer G; Skipka G
    Res Synth Methods; 2018 Sep; 9(3):382-392. PubMed ID: 29504289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.