BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2605327)

  • 1. Deduction of intrinsic mechanical properties of the erythrocyte membrane from observations of tank-treading in the rheoscope.
    Sutera SP; Pierre PR; Zahalak GI
    Biorheology; 1989; 26(2):177-97. PubMed ID: 2605327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion.
    Tran-Son-Tay R; Sutera SP; Rao PR
    Biophys J; 1984 Jul; 46(1):65-72. PubMed ID: 6743758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow.
    Fischer TM; Korzeniewski R
    Cytometry A; 2011 Nov; 79(11):946-51. PubMed ID: 22015732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity distribution on the membrane of a tank-treading red blood cell.
    Feng SS; Skalak R; Chien S
    Bull Math Biol; 1989; 51(4):449-65. PubMed ID: 2775918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling.
    Dodson WR; Dimitrakopoulos P
    Biophys J; 2010 Nov; 99(9):2906-16. PubMed ID: 21044588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensional recovery of an intact erythrocyte from a tank-treading motion.
    Sutera SP; Mueller ER; Zahalak GI
    J Biomech Eng; 1990 Aug; 112(3):250-6. PubMed ID: 2214705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow.
    Tran-Son-Tay R; Sutera SP; Zahalak GI; Rao PR
    Biophys J; 1987 Jun; 51(6):915-24. PubMed ID: 3607212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical approach to the motion of a red blood cell in Couette flow.
    Sugihara M; Niimi H
    Biorheology; 1984; 21(6):735-49. PubMed ID: 6518286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in deformability of human erythrocytes.
    Sutera SP; Gardner RA; Boylan CW; Carroll GL; Chang KC; Marvel JS; Kilo C; Gonen B; Williamson JR
    Blood; 1985 Feb; 65(2):275-82. PubMed ID: 3967082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory tank-treading motion of erythrocytes in shear flows.
    Dodson WR; Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011913. PubMed ID: 21867219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte deformation in shear flow: influences of internal viscosity, membrane stiffness, and hematocrit.
    Kon K; Maeda N; Shiga T
    Blood; 1987 Mar; 69(3):727-34. PubMed ID: 2434160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experiment studies on viscoelastic properties of erythrocyte membrane in patients with pulmonale during acute exacerbation].
    Zhang Y; Gu S; Qin J; Wu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):182-5. PubMed ID: 17333918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the red blood cell apparent membrane elastic modulus from viscometric measurements.
    Drochon A; Barthes-Biesel D; Lacombe C; Lelievre JC
    J Biomech Eng; 1990 Aug; 112(3):241-9. PubMed ID: 2120513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H; Sackmann E
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition.
    Skotheim JM; Secomb TW
    Phys Rev Lett; 2007 Feb; 98(7):078301. PubMed ID: 17359066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical fragility of erythrocyte membrane in neonates and adults.
    Böhler T; Leo A; Stadler A; Linderkamp O
    Pediatr Res; 1992 Jul; 32(1):92-6. PubMed ID: 1635851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of red cell membrane viscoelasticity by heat treatment: effect on cell deformability and suspension viscosity.
    Nash GB; Meiselman HJ
    Biorheology; 1985; 22(1):73-84. PubMed ID: 3986320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.