These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 2605327)
1. Deduction of intrinsic mechanical properties of the erythrocyte membrane from observations of tank-treading in the rheoscope. Sutera SP; Pierre PR; Zahalak GI Biorheology; 1989; 26(2):177-97. PubMed ID: 2605327 [TBL] [Abstract][Full Text] [Related]
2. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Tran-Son-Tay R; Sutera SP; Rao PR Biophys J; 1984 Jul; 46(1):65-72. PubMed ID: 6743758 [TBL] [Abstract][Full Text] [Related]
3. Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow. Fischer TM; Korzeniewski R Cytometry A; 2011 Nov; 79(11):946-51. PubMed ID: 22015732 [TBL] [Abstract][Full Text] [Related]
4. Velocity distribution on the membrane of a tank-treading red blood cell. Feng SS; Skalak R; Chien S Bull Math Biol; 1989; 51(4):449-65. PubMed ID: 2775918 [TBL] [Abstract][Full Text] [Related]
5. Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling. Dodson WR; Dimitrakopoulos P Biophys J; 2010 Nov; 99(9):2906-16. PubMed ID: 21044588 [TBL] [Abstract][Full Text] [Related]
6. Extensional recovery of an intact erythrocyte from a tank-treading motion. Sutera SP; Mueller ER; Zahalak GI J Biomech Eng; 1990 Aug; 112(3):250-6. PubMed ID: 2214705 [TBL] [Abstract][Full Text] [Related]
7. Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow. Tran-Son-Tay R; Sutera SP; Zahalak GI; Rao PR Biophys J; 1987 Jun; 51(6):915-24. PubMed ID: 3607212 [TBL] [Abstract][Full Text] [Related]
8. Numerical approach to the motion of a red blood cell in Couette flow. Sugihara M; Niimi H Biorheology; 1984; 21(6):735-49. PubMed ID: 6518286 [TBL] [Abstract][Full Text] [Related]
9. Age-related changes in deformability of human erythrocytes. Sutera SP; Gardner RA; Boylan CW; Carroll GL; Chang KC; Marvel JS; Kilo C; Gonen B; Williamson JR Blood; 1985 Feb; 65(2):275-82. PubMed ID: 3967082 [TBL] [Abstract][Full Text] [Related]
10. Oscillatory tank-treading motion of erythrocytes in shear flows. Dodson WR; Dimitrakopoulos P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011913. PubMed ID: 21867219 [TBL] [Abstract][Full Text] [Related]
11. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K; Wada S; Liu H Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211 [TBL] [Abstract][Full Text] [Related]
12. Mechanical properties of the human red blood cell membrane at -15 degrees C. Thom F Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084 [TBL] [Abstract][Full Text] [Related]
13. Erythrocyte deformation in shear flow: influences of internal viscosity, membrane stiffness, and hematocrit. Kon K; Maeda N; Shiga T Blood; 1987 Mar; 69(3):727-34. PubMed ID: 2434160 [TBL] [Abstract][Full Text] [Related]
14. [Experiment studies on viscoelastic properties of erythrocyte membrane in patients with pulmonale during acute exacerbation]. Zhang Y; Gu S; Qin J; Wu Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):182-5. PubMed ID: 17333918 [TBL] [Abstract][Full Text] [Related]
15. Determination of the red blood cell apparent membrane elastic modulus from viscometric measurements. Drochon A; Barthes-Biesel D; Lacombe C; Lelievre JC J Biomech Eng; 1990 Aug; 112(3):241-9. PubMed ID: 2120513 [TBL] [Abstract][Full Text] [Related]
16. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields. Engelhardt H; Sackmann E Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837 [TBL] [Abstract][Full Text] [Related]
17. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Skotheim JM; Secomb TW Phys Rev Lett; 2007 Feb; 98(7):078301. PubMed ID: 17359066 [TBL] [Abstract][Full Text] [Related]
18. Mechanical fragility of erythrocyte membrane in neonates and adults. Böhler T; Leo A; Stadler A; Linderkamp O Pediatr Res; 1992 Jul; 32(1):92-6. PubMed ID: 1635851 [TBL] [Abstract][Full Text] [Related]
19. Alteration of red cell membrane viscoelasticity by heat treatment: effect on cell deformability and suspension viscosity. Nash GB; Meiselman HJ Biorheology; 1985; 22(1):73-84. PubMed ID: 3986320 [TBL] [Abstract][Full Text] [Related]