These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 2605329)
1. Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: application to pressure and flow transients. Schmid-Schönbein GW; Lee SY; Sutton D Biorheology; 1989; 26(2):215-27. PubMed ID: 2605329 [TBL] [Abstract][Full Text] [Related]
2. Pulsatile pressure and flow in the skeletal muscle microcirculation. Lee SY; Schmid-Schönbein GW J Biomech Eng; 1990 Nov; 112(4):437-43. PubMed ID: 2273871 [TBL] [Abstract][Full Text] [Related]
3. A theory of blood flow in skeletal muscle. Schmid-Schönbein GW J Biomech Eng; 1988 Feb; 110(1):20-6. PubMed ID: 3347020 [TBL] [Abstract][Full Text] [Related]
4. Fluid exchange in skeletal muscle with viscoelastic blood vessels. Lee J; Salathé EP; Schmid-Schönbein GW Am J Physiol; 1987 Dec; 253(6 Pt 2):H1548-56. PubMed ID: 3425754 [TBL] [Abstract][Full Text] [Related]
5. Viscoelastic properties of microvessels in rat spinotrapezius muscle. Skalak TC; Schmid-Schönbein GW J Biomech Eng; 1986 Aug; 108(3):193-200. PubMed ID: 3747462 [TBL] [Abstract][Full Text] [Related]
6. Wave transmission and input impedance of a model of skeletal muscle microvasculature. Frasch HF; Kresh JY; Noordergraaf A Ann Biomed Eng; 1994; 22(1):45-57. PubMed ID: 8060026 [TBL] [Abstract][Full Text] [Related]
7. Pulsed magnetohydrodynamic blood flow in a rigid vessel under physiological pressure gradient. Abi-Abdallah D; Drochon A; Robin V; Fokapu O Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):445-58. PubMed ID: 19242832 [TBL] [Abstract][Full Text] [Related]
8. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks. Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506 [TBL] [Abstract][Full Text] [Related]
9. The pressure-flow relation for plasma in whole organ skeletal muscle and its experimental verification. Sutton DW; Schmid-Schönbein GW J Biomech Eng; 1991 Nov; 113(4):452-7. PubMed ID: 1762443 [TBL] [Abstract][Full Text] [Related]
11. Hemodynamics of gastric microcirculation in rats. Peti-Peterdi J; Kovács G; Hamar P; Rosivall L Am J Physiol; 1998 Oct; 275(4):H1404-10. PubMed ID: 9746491 [TBL] [Abstract][Full Text] [Related]
12. [Theory of microcirculation. 2. Problems of microcirculation from the viewpoint of the new theoretical concept]. Petrow JM Z Gesamte Inn Med; 1990 Sep; 45(18):535-40. PubMed ID: 2291281 [TBL] [Abstract][Full Text] [Related]
13. A new method for estimating skeletal muscle capillary pressure. Korthuis RJ; Granger DN; Taylor AE Am J Physiol; 1984 Jun; 246(6 Pt 2):H880-5. PubMed ID: 6742154 [TBL] [Abstract][Full Text] [Related]
14. Theoretical and experimental study of intermittent blood flows in microcirculation: application to the in-vivo determination of compliance. Guiffant G; Gabet L; Dufaux J J Biomech Eng; 1998 Dec; 120(6):737-42. PubMed ID: 10412457 [TBL] [Abstract][Full Text] [Related]
15. Responses of sequentially branching macro- and microvessels during reactive hyperemia in skeletal muscle. Meininger GA Microvasc Res; 1987 Jul; 34(1):29-45. PubMed ID: 3657603 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical differential equations of variables of the arterial pulse based on vessel wall and blood flow features. Bendel U Biomed Tech (Berl); 1998 Apr; 43(4):100-6. PubMed ID: 9611396 [TBL] [Abstract][Full Text] [Related]
17. Contribution of arterial feed vessels to skeletal muscle functional hyperemia. Lash JM J Appl Physiol (1985); 1994 Apr; 76(4):1512-9. PubMed ID: 8045827 [TBL] [Abstract][Full Text] [Related]
18. Theoretical analysis of pressure pulse propagation in arterial vessels. Belardinelli E; Cavalcanti S J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535 [TBL] [Abstract][Full Text] [Related]