These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26053331)

  • 1. An Effective Way to Optimize the Functionality of Graphene-Based Nanocomposite: Use of the Colloidal Mixture of Graphene and Inorganic Nanosheets.
    Jin X; Adpakpang K; Kim IY; Oh SM; Lee NS; Hwang SJ
    Sci Rep; 2015 Jun; 5():11057. PubMed ID: 26053331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusually Huge Charge Storage Capacity of Mn3O4-Graphene Nanocomposite Achieved by Incorporation of Inorganic Nanosheets.
    Adpakpang K; Jin X; Lee S; Oh SM; Lee NS; Hwang SJ
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13360-72. PubMed ID: 27120268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2D Metal Oxide Nanosheet as an Efficient Additive for Improving Na-Ion Electrode Activity of Graphene-Based Nanocomposites.
    Park B; Oh SM; Jin X; Adpakpang K; Lee NS; Hwang SJ
    Chemistry; 2017 May; 23(27):6544-6551. PubMed ID: 28139039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A direct hybridization between isocharged nanosheets of layered metal oxide and graphene through a surface-modification assembly process.
    Adpakpang K; Oh SM; Jin X; Hwang SJ
    Chemistry; 2014 Nov; 20(47):15459-66. PubMed ID: 25283131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene nanosheets as a platform for the 2D ordering of metal oxide nanoparticles: mesoporous 2D aggregate of anatase TiO2 nanoparticles with improved electrode performance.
    Lee JM; Kim IY; Han SY; Kim TW; Hwang SJ
    Chemistry; 2012 Oct; 18(43):13800-9. PubMed ID: 22987737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-small Co3O4 nanoparticles-reduced graphene oxide nanocomposite as superior anodes for lithium-ion batteries.
    Lou Y; Liang J; Peng Y; Chen J
    Phys Chem Chem Phys; 2015 Apr; 17(14):8885-93. PubMed ID: 25742903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed colloidal suspensions of reduced graphene oxide and layered metal oxide nanosheets: useful precursors for the porous nanocomposites and hybrid films of graphene/metal oxide.
    Lee YR; Kim IY; Kim TW; Lee JM; Hwang SJ
    Chemistry; 2012 Feb; 18(8):2263-71. PubMed ID: 22253000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries.
    Zhang F; Cao H; Yue D; Zhang J; Qu M
    Inorg Chem; 2012 Sep; 51(17):9544-51. PubMed ID: 22906577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical nanocomposites of vanadium oxide thin film anchored on graphene as high-performance cathodes in li-ion batteries.
    Li ZF; Zhang H; Liu Q; Liu Y; Stanciu L; Xie J
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18894-900. PubMed ID: 25296182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-assisted room-temperature synthesis of 2D nanostructured hybrid electrode materials: dramatic acceleration of the formation rate of 2D metal oxide nanoplates induced by reduced graphene oxide nanosheets.
    Sung DY; Gunjakar JL; Kim TW; Kim IY; Lee YR; Hwang SJ
    Chemistry; 2013 May; 19(22):7109-17. PubMed ID: 23559338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strong electronic coupling between graphene nanosheets and layered titanate nanoplates: a soft-chemical route to highly porous nanocomposites with improved photocatalytic activity.
    Kim IY; Lee JM; Kim TW; Kim HN; Kim HI; Choi W; Hwang SJ
    Small; 2012 Apr; 8(7):1038-48. PubMed ID: 22323425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Well encapsulated Mn
    Hao Q; Liu B; Ye J; Xu C
    J Colloid Interface Sci; 2017 Oct; 504():603-610. PubMed ID: 28618379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase Tuning of Nanostructured Gallium Oxide via Hybridization with Reduced Graphene Oxide for Superior Anode Performance in Li-Ion Battery: An Experimental and Theoretical Study.
    Patil SB; Kim IY; Gunjakar JL; Oh SM; Eom T; Kim H; Hwang SJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18679-88. PubMed ID: 26258574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous Hybrid Network of Graphene and Metal Oxide Nanosheets as Useful Matrix for Improving the Electrode Performance of Layered Double Hydroxides.
    Gu TH; Gunjakar JL; Kim IY; Patil SB; Lee JM; Jin X; Lee NS; Hwang SJ
    Small; 2015 Aug; 11(32):3921-31. PubMed ID: 25930158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.
    Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y
    Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery.
    Nethravathi C; Rajamathi CR; Rajamathi M; Gautam UK; Wang X; Golberg D; Bando Y
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2708-14. PubMed ID: 23484751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries.
    Wang JG; Jin D; Zhou R; Li X; Liu XR; Shen C; Xie K; Li B; Kang F; Wei B
    ACS Nano; 2016 Jun; 10(6):6227-34. PubMed ID: 27172485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous Vertical Co3O4 Nanosheet Arrays on Nitrogen-Doped Graphene Foam with Enhanced Charge-Storage Performance.
    Zou Y; Kinloch IA; Dryfe RA
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22831-8. PubMed ID: 26403179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical role of catalyst morphology in low-temperature synthesis of carbon nanotube-transition metal oxide nanocomposite.
    Jin X; Lim J; Ha Y; Kwon NH; Shin H; Kim IY; Lee NS; Kim MH; Kim H; Hwang SJ
    Nanoscale; 2017 Aug; 9(34):12416-12424. PubMed ID: 28809428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.