These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. Gu WY; Lai WM; Mow VC J Biomech Eng; 1998 Apr; 120(2):169-80. PubMed ID: 10412377 [TBL] [Abstract][Full Text] [Related]
6. Global flow equations for membrane transport from local equations of motion: I. The general case for (n-1) nonelectrolyte solutes plus water. Mikulecky DC Bull Math Biol; 1978; 40(6):791-805. PubMed ID: 743571 [No Abstract] [Full Text] [Related]
7. Kinetic theory model for ion movement through biological membranes. 3. Steady-state electrical properties with solution asymmetry. Mackey MC; McNeel ML Biophys J; 1971 Aug; 11(8):664-74. PubMed ID: 5116582 [TBL] [Abstract][Full Text] [Related]
8. Description of dynamic lung fluid transport phenomena by linear non-equilibrium thermodynamic equations. Rosenthal VV; Serikov VB; Belyakov NA; Symbirtsev SA J Biomed Eng; 1990 Jan; 12(1):46-50. PubMed ID: 2296169 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of peritoneal membrane pore models. Leypoldt JK Blood Purif; 1992; 10(3-4):227-38. PubMed ID: 1308686 [TBL] [Abstract][Full Text] [Related]
10. A three-dimensional junction-pore-matrix model for capillary permeability. Weinbaum S; Tsay R; Curry FE Microvasc Res; 1992 Jul; 44(1):85-111. PubMed ID: 1640881 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor. Dey B; Sekhar GPR J Theor Biol; 2016 Apr; 395():62-86. PubMed ID: 26851443 [TBL] [Abstract][Full Text] [Related]
12. The mechanics and thermodynamics of separation flow through porous, molecularly disperse, solid media - the Poiseuille Lecture 1981. Silberberg A Biorheology; 1982; 19(1/2):111-27. PubMed ID: 7093445 [TBL] [Abstract][Full Text] [Related]
13. A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. I. Theory. Schuff MM; Gore JP; Nauman EA J Math Biol; 2013 May; 66(6):1179-207. PubMed ID: 22526836 [TBL] [Abstract][Full Text] [Related]
14. An investigation of the factors controlling the staining and destaining of electrophoresis gels. Hitchman ML; Ekstrom B Electrophoresis; 1994 Feb; 15(2):200-8. PubMed ID: 7517860 [TBL] [Abstract][Full Text] [Related]
15. Equilibrium gel permeation: measurement of solute partitioning by direct fluorescence scanning. Vickers LP; Ackers GK Biophys Chem; 1977 Apr; 6(3):299-309. PubMed ID: 880343 [TBL] [Abstract][Full Text] [Related]
16. [The erythrocyte as a physical system. The kinetics of transmembrane oxygen transport]. Fok MV; Zaritskiĭ AR; Prokopenko GA; Grachev VI Zh Obshch Biol; 1994; 55(4-5):583-612. PubMed ID: 7975888 [TBL] [Abstract][Full Text] [Related]
17. Transport of macromolecules across microvascular walls: the two-pore theory. Rippe B; Haraldsson B Physiol Rev; 1994 Jan; 74(1):163-219. PubMed ID: 8295933 [TBL] [Abstract][Full Text] [Related]
18. Generalization of the Spiegler-Kedem-Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions. Slezak A; Turczyński B Biophys Chem; 1992 Oct; 44(3):139-42. PubMed ID: 1420944 [TBL] [Abstract][Full Text] [Related]
19. Equations for membrane transport. Experimental and theoretical tests of the frictional model. Daneshpajooh MH; Mason EA; Bresler EH; Wendt RP Biophys J; 1975 Jun; 15(6):591-613. PubMed ID: 1148361 [TBL] [Abstract][Full Text] [Related]
20. Membrane permeability. Generalization of the reflection coefficient method of describing volume and solute flows. Zelman A Biophys J; 1972 Apr; 12(4):414-9. PubMed ID: 5019478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]