These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26053610)

  • 1. Elucidation of Pathways for NO Electroreduction on Pt(111) from First Principles.
    Clayborne A; Chun HJ; Rankin RB; Greeley J
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8255-8. PubMed ID: 26053610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and FTIRS characterisation of NO adlayers on cyanide-modified Pt(111) electrodes: the mechanism of nitric oxide electroreduction on Pt.
    Cuesta A; Escudero M
    Phys Chem Chem Phys; 2008 Jul; 10(25):3628-34. PubMed ID: 18563223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elementary kinetics of nitrogen electroreduction on Fe surfaces.
    Maheshwari S; Rostamikia G; Janik MJ
    J Chem Phys; 2019 Jan; 150(4):041708. PubMed ID: 30709282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic reductions of nitrite, nitric oxide, and nitrous oxide by thermophilic cytochrome P450 CYP119 in film-modified electrodes and an analytical comparison of its catalytic activities with myoglobin.
    Immoos CE; Chou J; Bayachou M; Blair E; Greaves J; Farmer PJ
    J Am Chem Soc; 2004 Apr; 126(15):4934-42. PubMed ID: 15080699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of water and ammonia on surface species formed during NO(x) storage-reduction cycles over Pt-K/Al2O3 and Pt-Ba/Al2O3 catalysts.
    Morandi S; Prinetto F; Castoldi L; Lietti L; Forzatti P; Ghiotti G
    Phys Chem Chem Phys; 2013 Aug; 15(32):13409-17. PubMed ID: 23860492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A first-principles investigation of the effect of Pt cluster size on CO and NO oxidation intermediates and energetics.
    Xu Y; Getman RB; Shelton WA; Schneider WF
    Phys Chem Chem Phys; 2008 Oct; 10(39):6009-18. PubMed ID: 18825289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photooxidation of ammonia on TiO2 as a source of NO and NO2 under atmospheric conditions.
    Kebede MA; Varner ME; Scharko NK; Gerber RB; Raff JD
    J Am Chem Soc; 2013 Jun; 135(23):8606-15. PubMed ID: 23721064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential-Dependent Competitive Electroreduction of CO
    Ou L; He Z
    ACS Omega; 2020 Jun; 5(22):12735-12744. PubMed ID: 32548457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site selectivity in the protonation of a phosphinito bridged Pt(I)-Pt(I) complex: a combined NMR and density-functional theory mechanistic study.
    Latronico M; Polini F; Gallo V; Mastrorilli P; Calmuschi-Cula B; Englert U; Re N; Repo T; Räisänen M
    Inorg Chem; 2008 Nov; 47(21):9779-96. PubMed ID: 18826212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced electro-reduction of NO to NH
    Adam Gopal R; Govindan M; Moon IS
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29517-29523. PubMed ID: 29500589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects.
    Wasileski SA; Janik MJ
    Phys Chem Chem Phys; 2008 Jul; 10(25):3613-27. PubMed ID: 18563222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolytic removal of ammonia from aqueous phase by Pt/Ti anode.
    Li L; Huang Y; Liu Y; Li Y
    Water Sci Technol; 2013; 67(11):2451-7. PubMed ID: 23752376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters.
    Allian AD; Takanabe K; Fujdala KL; Hao X; Truex TJ; Cai J; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Mar; 133(12):4498-517. PubMed ID: 21366255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of ammonia to nitrogen over Pt/Fe/ZSM5 catalyst: influence of catalyst support on the low temperature activity.
    Kim MS; Lee DW; Chung SH; Hong YK; Lee SH; Oh SH; Cho IH; Lee KY
    J Hazard Mater; 2012 Oct; 237-238():153-60. PubMed ID: 22954598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Pt atom stabilized on nitrogen doped graphene: CO oxidation readily occurs via the tri-molecular Eley-Rideal mechanism.
    Zhang X; Lu Z; Xu G; Wang T; Ma D; Yang Z; Yang L
    Phys Chem Chem Phys; 2015 Aug; 17(30):20006-13. PubMed ID: 26172523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study and molecular orbital analysis of NMR shielding, spin-spin coupling, and electric field gradients of azido platinum complexes.
    Sutter K; Autschbach J
    J Am Chem Soc; 2012 Aug; 134(32):13374-85. PubMed ID: 22794134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroreduction activity of hydrogen peroxide on Pt and Au electrodes.
    Li X; Heryadi D; Gewirth AA
    Langmuir; 2005 Sep; 21(20):9251-9. PubMed ID: 16171359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a bimetallic-bridging intermediate in the reduction of NO to N2O: a density functional theory study.
    Ohta T; Kitagawa T; Varotsis C
    Inorg Chem; 2006 Apr; 45(8):3187-90. PubMed ID: 16602774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational study on the electrified Pt(111) surface by the cluster model.
    Yang J
    Phys Chem Chem Phys; 2019 Mar; 21(11):6112-6125. PubMed ID: 30815665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.