These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26053699)

  • 1. Processing of motion stimuli by cells in the optic tectum of chickens.
    Verhaal J; Luksch H
    Neuroreport; 2015 Jul; 26(10):578-82. PubMed ID: 26053699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal responses to motion and apparent motion in the optic tectum of chickens.
    Verhaal J; Luksch H
    Brain Res; 2016 Mar; 1635():190-200. PubMed ID: 26797490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway.
    Luksch H; Cox K; Karten HJ
    J Comp Neurol; 1998 Jul; 396(3):399-414. PubMed ID: 9624592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurons with complex receptive fields in the stratum griseum centrale of the zebra finch (Taeniopygia guffata castanotis Gould) optic tectum.
    Schmidt A; Bischof HJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2001 Dec; 187(11):913-24. PubMed ID: 11866189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the mammalian tectum.
    Major DE; Luksch H; Karten HJ
    J Comp Neurol; 2000 Jul; 423(2):243-60. PubMed ID: 10867657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chattering and differential signal processing in identified motion-sensitive neurons of parallel visual pathways in the chick tectum.
    Luksch H; Karten HJ; Kleinfeld D; Wessel R
    J Neurosci; 2001 Aug; 21(16):6440-6. PubMed ID: 11487668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual and nonvisual units recorded from the optic tectum of Gallus domesticus.
    Cotter JR
    Brain Behav Evol; 1976; 13(1):1-21. PubMed ID: 974720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparse spatial sampling for the computation of motion in multiple stages.
    Mahani AS; Khanbabaie R; Luksch H; Wessel R
    Biol Cybern; 2006 Apr; 94(4):276-87. PubMed ID: 16402243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity response profiles of collicular neurons: parallel and convergent visual information channels.
    Waleszczyk WJ; Wang C; Burke W; Dreher B
    Neuroscience; 1999; 93(3):1063-76. PubMed ID: 10473271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic dynamics mediate sensitivity to motion independent of stimulus details.
    Luksch H; Khanbabaie R; Wessel R
    Nat Neurosci; 2004 Apr; 7(4):380-8. PubMed ID: 14990932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tectal neurons signal impending collision of looming objects in the pigeon.
    Wu LQ; Niu YQ; Yang J; Wang SR
    Eur J Neurosci; 2005 Nov; 22(9):2325-31. PubMed ID: 16262670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Dendritic Properties and Local Inhibitory Input Enable Selectivity for Object Motion in Mouse Superior Colliculus Neurons.
    Gale SD; Murphy GJ
    J Neurosci; 2016 Aug; 36(35):9111-23. PubMed ID: 27581453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic response properties of visual neurons and context-dependent surround effects on receptive fields in the tectum of the salamander Plethodon shermani.
    Schuelert N; Dicke U
    Neuroscience; 2005; 134(2):617-32. PubMed ID: 15975725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The optic tectum of the gymnotiform electric fish, Eigenmannia: labeling of physiologically identified cells.
    Heiligenberg W; Rose GJ
    Neuroscience; 1987 Jul; 22(1):331-40. PubMed ID: 3627446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attentional capture? Synchronized feedback signals from the isthmi boost retinal signals to higher visual areas.
    Marín GJ; Durán E; Morales C; González-Cabrera C; Sentis E; Mpodozis J; Letelier JC
    J Neurosci; 2012 Jan; 32(3):1110-22. PubMed ID: 22262908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana catesbeiana.
    Kang HJ; Li XH
    Neurosci Bull; 2010 Aug; 26(4):304-16. PubMed ID: 20651812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.
    Svirskis G; Baranauskas G; Svirskiene N; Tkatch T
    PLoS One; 2015; 10(9):e0139472. PubMed ID: 26414356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between tectal radial cells in the red-eared turtle, Pseudemys scripta elegans: an analysis of tectal modules.
    Schechter PB; Ulinski PS
    J Morphol; 1979 Oct; 162(1):17-36. PubMed ID: 228046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory bursts in the optic tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis.
    Marín G; Mpodozis J; Sentis E; Ossandón T; Letelier JC
    J Neurosci; 2005 Jul; 25(30):7081-9. PubMed ID: 16049185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual receptive field properties of excitatory neurons in the substantia nigra.
    Nagy A; Eördegh G; Norita M; Benedek G
    Neuroscience; 2005; 130(2):513-8. PubMed ID: 15664707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.