These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26054057)

  • 1. Comparison Study for Whitney (Raviart-Thomas)-Type Source Models in Finite-Element-Method-Based EEG Forward Modeling.
    Bauer M; Pursiainen S; Vorwerk J; Kostler H; Wolters CH
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2648-56. PubMed ID: 26054057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A realistic, accurate and fast source modeling approach for the EEG forward problem.
    Miinalainen T; Rezaei A; Us D; Nüßing A; Engwer C; Wolters CH; Pursiainen S
    Neuroimage; 2019 Jan; 184():56-67. PubMed ID: 30165251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroencephalography (EEG) forward modeling via H(div) finite element sources with focal interpolation.
    Pursiainen S; Vorwerk J; Wolters CH
    Phys Med Biol; 2016 Dec; 61(24):8502-8520. PubMed ID: 27845929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem.
    Wagner S; Lucka F; Vorwerk J; Herrmann CS; Nolte G; Burger M; Wolters CH
    Neuroimage; 2016 Oct; 140():163-73. PubMed ID: 27125841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The FieldTrip-SimBio pipeline for EEG forward solutions.
    Vorwerk J; Oostenveld R; Piastra MC; Magyari L; Wolters CH
    Biomed Eng Online; 2018 Mar; 17(1):37. PubMed ID: 29580236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study.
    Güllmar D; Haueisen J; Reichenbach JR
    Neuroimage; 2010 May; 51(1):145-63. PubMed ID: 20156576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Unfitted Discontinuous Galerkin Method for Solving the EEG Forward Problem.
    Nusing A; Wolters CH; Brinck H; Engwer C
    IEEE Trans Biomed Eng; 2016 Dec; 63(12):2564-2575. PubMed ID: 27416584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representation of bioelectric current sources using Whitney elements in the finite element method.
    Tanzer IO; Järvenpää S; Nenonen J; Somersalo E
    Phys Med Biol; 2005 Jul; 50(13):3023-39. PubMed ID: 15972978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Vanrumste B; Van Hese P; Delputte S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1877-94. PubMed ID: 18364544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multipole approach for EEG forward modeling using the finite element method.
    Vorwerk J; Hanrath A; Wolters CH; Grasedyck L
    Neuroimage; 2019 Nov; 201():116039. PubMed ID: 31369809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric surface-source modeling and estimation with electroencephalography.
    Cao N; Yetik IS; Nehorai A; Muravchik CH; Haueisen J
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2414-24. PubMed ID: 17153198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Strategy for Finite Element Mesh Generation for Accurate Solutions of Electroencephalography Forward Problems.
    Lee C; Im CH
    Brain Topogr; 2019 May; 32(3):354-362. PubMed ID: 30073558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
    Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS
    Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of tissue conductivity changes on the EEG signal in the human brain: a simulation study.
    Jochmann T; Güllmar D; Haueisen J; Reichenbach JR
    Z Med Phys; 2011 May; 21(2):102-12. PubMed ID: 20888205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry-adapted hexahedral meshes improve accuracy of finite-element-method-based EEG source analysis.
    Wolters CH; Anwander A; Berti G; Hartmann U
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1446-53. PubMed ID: 17694865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method for EEG guided transcranial electrical stimulation without models.
    Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M
    J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite-element reciprocity solution for EEG forward modeling with realistic individual head models.
    Ziegler E; Chellappa SL; Gaggioni G; Ly JQM; Vandewalle G; André E; Geuzaine C; Phillips C
    Neuroimage; 2014 Dec; 103():542-551. PubMed ID: 25204867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A second-order finite element algorithm for solving the three-dimensional EEG forward problem.
    Zhang YC; Zhu SA; He B
    Phys Med Biol; 2004 Jul; 49(13):2975-87. PubMed ID: 15285259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A meshless method for solving the EEG forward problem.
    von Ellenrieder N; Muravchik CH; Nehorai A
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):249-57. PubMed ID: 15709662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forward and inverse problems of EEG dipole localization.
    Musha T; Okamoto Y
    Crit Rev Biomed Eng; 1999; 27(3-5):189-239. PubMed ID: 10864280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.