These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 26054279)
1. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis. Cao W; Zhang C; Hong P; Ji H Food Chem; 2008 Jul; 109(1):176-83. PubMed ID: 26054279 [TBL] [Abstract][Full Text] [Related]
2. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bhaskar N; Benila T; Radha C; Lalitha RG Bioresour Technol; 2008 Jan; 99(2):335-43. PubMed ID: 17303414 [TBL] [Abstract][Full Text] [Related]
3. Protein hydrolysate from visceral waste proteins of Catla (Catla catla): optimization of hydrolysis conditions for a commercial neutral protease. Bhaskar N; Mahendrakar NS Bioresour Technol; 2008 Jul; 99(10):4105-11. PubMed ID: 17933524 [TBL] [Abstract][Full Text] [Related]
4. Change Regularity of Taste and the Performance of Endogenous Proteases in Shrimp ( Wu S; Zhao M; Gao S; Xu Y; Zhao X; Liu M; Liu X Foods; 2021 May; 10(5):. PubMed ID: 34066655 [TBL] [Abstract][Full Text] [Related]
5. Release principle of peptides and amino acids during the autolysis of shrimp head from Cao W; Tian S; Wang H; Zhang C; Yuan J Food Sci Nutr; 2020 Jan; 8(1):170-178. PubMed ID: 31993143 [TBL] [Abstract][Full Text] [Related]
6. Ultraviolet irradiation and gradient temperature assisted autolysis for protein recovery from shrimp head waste. Cao W; Tan C; Zhan X; Li H; Zhang C Food Chem; 2014 Dec; 164():136-41. PubMed ID: 24996316 [TBL] [Abstract][Full Text] [Related]
7. Autolysis of Pacific white shrimp (Litopenaeus vannamei) meat: characterization and the effects of protein additives. Eakpetch P; Benjakul S; Visessanguan W; Kijroongrojana K J Food Sci; 2008 Mar; 73(2):S95-103. PubMed ID: 18298747 [TBL] [Abstract][Full Text] [Related]
8. Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. Dey SS; Dora KC J Food Sci Technol; 2014 Jan; 51(1):16-24. PubMed ID: 24426043 [TBL] [Abstract][Full Text] [Related]
9. Comparison of amino acid release between enzymatic hydrolysis and acid autolysis of rainbow trout viscera. Domínguez H; Iñarra B; Labidi J; Mendiola D; Bald C Heliyon; 2024 Mar; 10(5):e27030. PubMed ID: 38468971 [TBL] [Abstract][Full Text] [Related]
10. Optimization of peptic hydrolysis parameters for the production of angiotensin I-converting enzyme inhibitory hydrolysate from Acetes chinensis through Plackett-Burman and response surface methodological approaches. Cao W; Zhang C; Ji H; Hao J J Sci Food Agric; 2012 Jan; 92(1):42-8. PubMed ID: 21732383 [TBL] [Abstract][Full Text] [Related]
11. Compositions and yield of lipids extracted from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei) as affected by prior autolysis. Senphan T; Benjakul S Food Chem; 2012 Sep; 134(2):829-35. PubMed ID: 23107697 [TBL] [Abstract][Full Text] [Related]
12. Extraction, optimization, and functional quality evaluation of carotenoproteins from shrimp processing side streams through enzymatic process. Dayakar B; Xavier M; Ngasotter S; Dhanabalan V; Porayil L; Balange AK; Nayak BB Environ Sci Pollut Res Int; 2024 Nov; 31(53):62315-62328. PubMed ID: 37831258 [TBL] [Abstract][Full Text] [Related]
13. Modeling and optimization of Newfoundland shrimp waste hydrolysis for microbial growth using response surface methodology and artificial neural networks. Zhang K; Zhang B; Chen B; Jing L; Zhu Z; Kazemi K Mar Pollut Bull; 2016 Aug; 109(1):245-252. PubMed ID: 27312986 [TBL] [Abstract][Full Text] [Related]
14. An autolytic process for recovery of antioxidant activity rich carotenoprotein from shrimp heads. Sowmya R; Rathinaraj K; Sachindra NM Mar Biotechnol (NY); 2011 Oct; 13(5):918-27. PubMed ID: 21243391 [TBL] [Abstract][Full Text] [Related]
15. Investigation of enzymatic hydrolysis conditions on the properties of protein hydrolysate from fish muscle (Collichthys niveatus) and evaluation of its functional properties. Shen Q; Guo R; Dai Z; Zhang Y J Agric Food Chem; 2012 May; 60(20):5192-8. PubMed ID: 22530872 [TBL] [Abstract][Full Text] [Related]
16. Optimization of the production of Momordica charantia L. Var. abbreviata Ser. protein hydrolysates with hypoglycemic effect using Alcalase. Yuan X; Gu X; Tang J Food Chem; 2008 Nov; 111(2):340-4. PubMed ID: 26047432 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology. Kurozawa LE; Park KJ; Hubinger MD J Food Sci; 2008 Jun; 73(5):C405-12. PubMed ID: 18576986 [TBL] [Abstract][Full Text] [Related]
18. Acid hydrolysis of proteins for chromatographic analysis of amino acids. Zumwalt RW; Absheer JS; Kaiser FE; Gehrke CW J Assoc Off Anal Chem; 1987; 70(1):147-51. PubMed ID: 3104303 [TBL] [Abstract][Full Text] [Related]
19. Preparation, amino acid composition, and in Vitro antioxidant activity of okra seed meal protein hydrolysates. Yao H; Yang J; Zhan J; Lu Q; Su M; Jiang Y Food Sci Nutr; 2021 Jun; 9(6):3059-3070. PubMed ID: 34136171 [TBL] [Abstract][Full Text] [Related]
20. Preparation of reactive oxygen scavenging peptides from tilapia (Oreochromis niloticus) skin gelatin: optimization using response surface methodology. Zhuang Y; Sun L J Food Sci; 2011 Apr; 76(3):C483-9. PubMed ID: 21535818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]