BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26054461)

  • 1. Influence of alum on cyanobacterial blooms and water quality of earthen fish ponds.
    Dawah A; Soliman A; Abomohra Ael-F; Battah M; Anees D
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16502-13. PubMed ID: 26054461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples.
    Waajen GW; Faassen EJ; Lürling M
    Environ Sci Pollut Res Int; 2014; 21(16):9983-94. PubMed ID: 24798921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
    Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM
    Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.
    Wilson AE; Chislock MF; Yang Z; Barros MUG; Roberts JF
    Environ Monit Assess; 2018 Mar; 190(4):247. PubMed ID: 29574498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi.
    Cao X; Wang Y; He J; Luo X; Zheng Z
    Environ Pollut; 2016 Dec; 219():580-587. PubMed ID: 27318542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harmful freshwater algal blooms, with an emphasis on cyanobacteria.
    Paerl HW; Fulton RS; Moisander PH; Dyble J
    ScientificWorldJournal; 2001 Apr; 1():76-113. PubMed ID: 12805693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replenishment of urban landscape ponds with reclaimed water: Spatiotemporal variations of water quality and mechanism of algal inhibition with alum sludge.
    Liu W; Xu ZQ; Long YJ; Feng MQ
    Sci Total Environ; 2021 Oct; 790():148052. PubMed ID: 34090163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aluminum sulfate (alum) application interactions with coupled metal and nutrient cycling in a hypereutrophic lake ecosystem.
    Nogaro G; Burgin AJ; Schoepfer VA; Konkler MJ; Bowman KL; Hammerschmidt CR
    Environ Pollut; 2013 May; 176():267-74. PubMed ID: 23454589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geo-engineering experiments in two urban ponds to control eutrophication.
    Waajen G; van Oosterhout F; Douglas G; Lürling M
    Water Res; 2016 Jun; 97():69-82. PubMed ID: 26725204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green algal over cyanobacterial dominance promoted with nitrogen and phosphorus additions in a mesocosm study at Lake Taihu, China.
    Ma J; Qin B; Paerl HW; Brookes JD; Wu P; Zhou J; Deng J; Guo J; Li Z
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5041-9. PubMed ID: 25516247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China.
    Ma J; Qin B; Wu P; Zhou J; Niu C; Deng J; Niu H
    J Environ Sci (China); 2015 Jan; 27():80-6. PubMed ID: 25597665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China.
    Xu H; Paerl HW; Qin B; Zhu G; Hall NS; Wu Y
    Environ Sci Technol; 2015 Jan; 49(2):1051-9. PubMed ID: 25495555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of several in-lake restoration techniques to improve the water quality problem (eutrophication) of Saint-Augustin Lake, Quebec, Canada.
    Galvez-Cloutier R; Saminathan SK; Boillot C; Triffaut-Bouchet G; Bourget A; Soumis-Dugas G
    Environ Manage; 2012 May; 49(5):1037-53. PubMed ID: 22476666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Phoslock® on legacy phosphorus, nutrient ratios, and algal assemblage composition in hypereutrophic water resources.
    Bishop WM; Richardson RJ
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4544-4557. PubMed ID: 29188598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wastewater discharge with phytoplankton may favor cyanobacterial development in the main drinking water supply river in Uruguay.
    Olano H; Martigani F; Somma A; Aubriot L
    Environ Monit Assess; 2019 Feb; 191(3):146. PubMed ID: 30737570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do high concentrations of microcystin prevent Daphnia control of phytoplankton?
    Chislock MF; Sarnelle O; Jernigan LM; Wilson AE
    Water Res; 2013 Apr; 47(6):1961-70. PubMed ID: 23395484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins.
    Lürling M; van Oosterhout F; Faassen E
    Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28208670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off-flavor compounds from decaying cyanobacterial blooms of Lake Taihu.
    Ma Z; Niu Y; Xie P; Chen J; Tao M; Deng X
    J Environ Sci (China); 2013 Mar; 25(3):495-501. PubMed ID: 23923422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomanipulation of hypereutrophic ponds: when it works and why it fails.
    Peretyatko A; Teissier S; De Backer S; Triest L
    Environ Monit Assess; 2012 Mar; 184(3):1517-31. PubMed ID: 21523381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling toxic cyanobacteria: effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins.
    Lürling M; Faassen EJ
    Water Res; 2012 Apr; 46(5):1447-59. PubMed ID: 22137447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.