BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 26054804)

  • 1. Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials.
    Doyle H; Lohfeld S; McHugh P
    Med Eng Phys; 2015 Aug; 37(8):767-76. PubMed ID: 26054804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling.
    Doyle H; Lohfeld S; McHugh P
    Ann Biomed Eng; 2014 Mar; 42(3):661-77. PubMed ID: 24057867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds.
    Lohfeld S; Cahill S; Barron V; McHugh P; Dürselen L; Kreja L; Bausewein C; Ignatius A
    Acta Biomater; 2012 Sep; 8(9):3446-56. PubMed ID: 22652444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method.
    Lu L; Zhang Q; Wootton D; Chiou R; Li D; Lu B; Lelkes P; Zhou J
    J Mater Sci Mater Med; 2012 Sep; 23(9):2217-26. PubMed ID: 22669285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a Multiscale Modelling Methodology to Predict the Mechanical Properties of PCL/β-TCP Sintered Scaffold Materials.
    Doyle H; Lohfeld S; McDonnell P; McHugh P
    Ann Biomed Eng; 2015 Aug; 43(8):1989-98. PubMed ID: 25449151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study.
    Sharaf B; Faris CB; Abukawa H; Susarla SM; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2012 Mar; 70(3):647-56. PubMed ID: 22079064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication.
    Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold.
    Cao L; Duan PG; Wang HR; Li XL; Yuan FL; Fan ZY; Li SM; Dong J
    Int J Nanomedicine; 2012; 7():5881-8. PubMed ID: 23226019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone.
    Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R
    Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering.
    Liu D; Zhuang J; Shuai C; Peng S
    Biofabrication; 2013 Jun; 5(2):025005. PubMed ID: 23458914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation.
    Flauder S; Sajzew R; Müller FA
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model.
    Li Y; Wu ZG; Li XK; Guo Z; Wu SH; Zhang YQ; Shi L; Teoh SH; Liu YC; Zhang ZY
    Biomaterials; 2014 Jul; 35(22):5647-59. PubMed ID: 24743032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer powder processing of cryomilled polycaprolactone for solvent-free generation of homogeneous bioactive tissue engineering scaffolds.
    Lim J; Chong MS; Chan JK; Teoh SH
    Small; 2014 Jun; 10(12):2495-502. PubMed ID: 24740849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel calcium phosphate/PCL graded samples: Design and development in view of biomedical applications.
    Petit C; Tulliani JM; Tadier S; Meille S; Chevalier J; Palmero P
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():336-346. PubMed ID: 30678919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of novel akermanite:poly-ϵ-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering.
    Zanetti AS; McCandless GT; Chan JY; Gimble JM; Hayes DJ
    J Tissue Eng Regen Med; 2015 Apr; 9(4):389-404. PubMed ID: 23166107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.