BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 26054861)

  • 1. Food adulteration: Sources, health risks, and detection methods.
    Bansal S; Singh A; Mangal M; Mangal AK; Kumar S
    Crit Rev Food Sci Nutr; 2017 Apr; 57(6):1174-1189. PubMed ID: 26054861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Hazard Classification Scheme for Substances Used in the Fraudulent Adulteration of Foods.
    Everstine K; Abt E; McColl D; Popping B; Morrison-Rowe S; Lane RW; Scimeca J; Winter C; Ebert A; Moore JC; Chin HB
    J Food Prot; 2018 Jan; 81(1):31-36. PubMed ID: 29257723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances on determination of milk adulterants.
    Nascimento CF; Santos PM; Pereira-Filho ER; Rocha FRP
    Food Chem; 2017 Apr; 221():1232-1244. PubMed ID: 27979084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration.
    Lohumi S; Lee H; Kim MS; Qin J; Kandpal LM; Bae H; Rahman A; Cho BK
    PLoS One; 2018; 13(4):e0195253. PubMed ID: 29708973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economically Motivated Food Fraud and Adulteration in Brazil: Incidents and Alternatives to Minimize Occurrence.
    Tibola CS; da Silva SA; Dossa AA; Patrício DI
    J Food Sci; 2018 Aug; 83(8):2028-2038. PubMed ID: 30020548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of apple juice adulteration using near-infrared transflectance spectroscopy.
    León L; Kelly JD; Downey G
    Appl Spectrosc; 2005 May; 59(5):593-9. PubMed ID: 15969804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of adulteration in food based on nondestructive analysis techniques: a review.
    He Y; Bai X; Xiao Q; Liu F; Zhou L; Zhang C
    Crit Rev Food Sci Nutr; 2021; 61(14):2351-2371. PubMed ID: 32543218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Adulterants and Contaminants in Liquid Foods-A Review.
    Jha SN; Jaiswal P; Grewal MK; Gupta M; Bhardwaj R
    Crit Rev Food Sci Nutr; 2016 Jul; 56(10):1662-84. PubMed ID: 25975571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Different Adulterants on Honey Quality Properties and Evaluating Different Analytical Approaches for Adulteration Detection.
    Damto T; Zewdu A; Birhanu T
    J Food Prot; 2024 Apr; 87(4):100241. PubMed ID: 38360408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics.
    Petrakis EA; Polissiou MG
    Talanta; 2017 Jan; 162():558-566. PubMed ID: 27837871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adverse child health impacts resulting from food adulterations in the Greater China Region.
    Li WC; Chow CF
    J Sci Food Agric; 2017 Sep; 97(12):3897-3916. PubMed ID: 28466508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An update on formaldehyde adulteration in food: sources, detection, mechanisms, and risk assessment.
    Rahman MB; Hussain M; Kabiraz MP; Nordin N; Siddiqui SA; Bhowmik S; Begum M
    Food Chem; 2023 Nov; 427():136761. PubMed ID: 37406446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive approach for milk adulteration detection using inherent bio-physical properties as 'Universal Markers': Towards a miniaturized adulteration detection platform.
    Tripathy S; Ghole AR; Deep K; Vanjari SRK; Singh SG
    Food Chem; 2017 Feb; 217():756-765. PubMed ID: 27664695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food fingerprints - A valuable tool to monitor food authenticity and safety.
    Medina S; Pereira JA; Silva P; Perestrelo R; Câmara JS
    Food Chem; 2019 Apr; 278():144-162. PubMed ID: 30583355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting.
    Petrakis EA; Cagliani LR; Polissiou MG; Consonni R
    Food Chem; 2015 Apr; 173():890-6. PubMed ID: 25466103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanobiosensors and their role in detection of adulterants and contaminants in food products.
    Kaur G; Bhari R; Kumar K
    Crit Rev Biotechnol; 2024 Jun; 44(4):547-561. PubMed ID: 36842973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-targeted detection of food adulteration using an ensemble machine-learning model.
    Chung T; Tam IYS; Lam NYY; Yang Y; Liu B; He B; Li W; Xu J; Yang Z; Zhang L; Cao JN; Lau LT
    Sci Rep; 2022 Dec; 12(1):20956. PubMed ID: 36470940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. International Survey of Food Fraud and Related Terminology: Preliminary Results and Discussion.
    Spink J; Bedard B; Keogh J; Moyer DC; Scimeca J; Vasan A
    J Food Sci; 2019 Oct; 84(10):2705-2718. PubMed ID: 31546281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical methods used for the authentication of food of animal origin.
    Abbas O; Zadravec M; Baeten V; Mikuš T; Lešić T; Vulić A; Prpić J; Jemeršić L; Pleadin J
    Food Chem; 2018 Apr; 246():6-17. PubMed ID: 29291879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food colors: Existing and emerging food safety concerns.
    Oplatowska-Stachowiak M; Elliott CT
    Crit Rev Food Sci Nutr; 2017 Feb; 57(3):524-548. PubMed ID: 25849411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.