These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26054906)

  • 21. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer.
    Singleton C; Le Brun NE
    Biometals; 2007 Jun; 20(3-4):275-89. PubMed ID: 17225061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial Isolate Inhabiting Spitsbergen Soil Modifies the Physiological Response of
    Hanaka A; Nowak A; Plak A; Dresler S; Ozimek E; Jaroszuk-Ściseł J; Wójciak-Kosior M; Sowa I
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 30999692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and functional characterization of the ZmCOPT copper transporter family in maize.
    Wang H; Du H; Li H; Huang Y; Ding J; Liu C; Wang N; Lan H; Zhang S
    PLoS One; 2018; 13(7):e0199081. PubMed ID: 30036360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines.
    Juang KW; Lee YI; Lai HY; Chen BC
    Ecotoxicol Environ Saf; 2014 Jun; 104():36-42. PubMed ID: 24632121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The grapevine NaE sodium exclusion locus encodes sodium transporters with diverse transport properties and localisation.
    Wu Y; Henderson SW; Wege S; Zheng F; Walker AR; Walker RR; Gilliham M
    J Plant Physiol; 2020; 246-247():153113. PubMed ID: 32044673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.
    Tanyolaç D; Ekmekçi Y; Unalan S
    Chemosphere; 2007 Feb; 67(1):89-98. PubMed ID: 17109927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense?
    Godfrey D; Able AJ; Dry IB
    Mol Plant Microbe Interact; 2007 Sep; 20(9):1112-25. PubMed ID: 17849714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots.
    Andrés-Colás N; Sancenón V; Rodríguez-Navarro S; Mayo S; Thiele DJ; Ecker JR; Puig S; Peñarrubia L
    Plant J; 2006 Jan; 45(2):225-36. PubMed ID: 16367966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity.
    Fu XZ; Tong YH; Zhou X; Ling LL; Chun CP; Cao L; Zeng M; Peng LZ
    Gene; 2017 Sep; 629():1-8. PubMed ID: 28760553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease.
    Fukai T; Ushio-Fukai M; Kaplan JH
    Am J Physiol Cell Physiol; 2018 Aug; 315(2):C186-C201. PubMed ID: 29874110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings.
    Zhang YK; Zhu DF; Zhang YP; Chen HZ; Xiang J; Lin XQ
    PLoS One; 2015; 10(2):e0116971. PubMed ID: 25719552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper accumulation, subcellular partitioning and physiological and molecular responses in relation to different copper tolerance in apple rootstocks.
    Wan H; Du J; He J; Lyu D; Li H
    Tree Physiol; 2019 Jul; 39(7):1215-1234. PubMed ID: 30977826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper accumulation, translocation, and toxic effects in grapevine cuttings.
    Juang KW; Lee YI; Lai HY; Wang CH; Chen BC
    Environ Sci Pollut Res Int; 2012 May; 19(4):1315-22. PubMed ID: 22090256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of calcium on rhizotoxicity and the accumulation and translocation of copper by grapevines.
    Chen PY; Lee YI; Chen BC; Juang KW
    Plant Physiol Biochem; 2013 Dec; 73():375-82. PubMed ID: 24211513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper transport and compartmentation in grape cells.
    Martins V; Hanana M; Blumwald E; Gerós H
    Plant Cell Physiol; 2012 Nov; 53(11):1866-80. PubMed ID: 22952251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Molecular mechanisms underlying copper homeostasis in Mammalian cells].
    Ogra Y
    Nihon Eiseigaku Zasshi; 2014; 69(2):136-45. PubMed ID: 24858509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots.
    Henderson SW; Baumann U; Blackmore DH; Walker AR; Walker RR; Gilliham M
    BMC Plant Biol; 2014 Oct; 14():273. PubMed ID: 25344057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative damage induced in Vicia faba by coke plant wastewater.
    Liu Y; Lv Y
    Toxicol Ind Health; 2011 Oct; 27(9):787-92. PubMed ID: 21415094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface.
    Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ
    Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating wild grapevine tolerance to copper toxicity.
    Cambrollé J; García JL; Figueroa ME; Cantos M
    Chemosphere; 2015 Feb; 120():171-8. PubMed ID: 25025740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.