These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 26054962)
1. Battery related cobalt and REE flows in WEEE treatment. Sommer P; Rotter VS; Ueberschaar M Waste Manag; 2015 Nov; 45():298-305. PubMed ID: 26054962 [TBL] [Abstract][Full Text] [Related]
2. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety. Terazono A; Oguchi M; Iino S; Mogi S Waste Manag; 2015 May; 39():246-57. PubMed ID: 25716742 [TBL] [Abstract][Full Text] [Related]
3. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China. Zhang S; Ding Y; Liu B; Pan D; Chang CC; Volinsky AA Waste Manag; 2015 Nov; 45():361-73. PubMed ID: 26059074 [TBL] [Abstract][Full Text] [Related]
4. A geological reconnaissance of electrical and electronic waste as a source for rare earth metals. Mueller SR; Wäger PA; Widmer R; Williams ID Waste Manag; 2015 Nov; 45():226-34. PubMed ID: 25957937 [TBL] [Abstract][Full Text] [Related]
5. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment. Chancerel P; Rotter VS; Ueberschaar M; Marwede M; Nissen NF; Lang KD Waste Manag Res; 2013 Oct; 31(10 Suppl):3-16. PubMed ID: 24068305 [TBL] [Abstract][Full Text] [Related]
6. Determination of Metal Content of Waste Mobile Phones and Estimation of Their Recovery Potential in Turkey. Sahan M; Kucuker MA; Demirel B; Kuchta K; Hursthouse A Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30862075 [TBL] [Abstract][Full Text] [Related]
7. Strategic exploration of battery waste management: A game-theoretic approach. Kaushal RK; Nema AK; Chaudhary J Waste Manag Res; 2015 Jul; 33(7):681-9. PubMed ID: 26060193 [TBL] [Abstract][Full Text] [Related]
8. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Wang X; Gaustad G; Babbitt CW Waste Manag; 2016 May; 51():204-213. PubMed ID: 26577459 [TBL] [Abstract][Full Text] [Related]
9. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes. Marra A; Cesaro A; Belgiorno V Environ Sci Pollut Res Int; 2019 Jul; 26(19):19897-19905. PubMed ID: 31090011 [TBL] [Abstract][Full Text] [Related]
10. Primary and secondary battery consumption trends in Sweden 1996-2013: method development and detailed accounting by battery type. Patrício J; Kalmykova Y; Berg PE; Rosado L; Åberg H Waste Manag; 2015 May; 39():236-45. PubMed ID: 25782361 [TBL] [Abstract][Full Text] [Related]
11. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction. Bertuol DA; Machado CM; Silva ML; Calgaro CO; Dotto GL; Tanabe EH Waste Manag; 2016 May; 51():245-251. PubMed ID: 26970842 [TBL] [Abstract][Full Text] [Related]
12. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries. Meshram P; Pandey BD; Mankhand TR Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588 [TBL] [Abstract][Full Text] [Related]
13. Review of material recovery from used electric and electronic equipment-alternative options for resource conservation. Friege H Waste Manag Res; 2012 Sep; 30(9 Suppl):3-16. PubMed ID: 22993131 [TBL] [Abstract][Full Text] [Related]
14. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives. Habib K; Parajuly K; Wenzel H Environ Sci Technol; 2015 Oct; 49(20):12441-9. PubMed ID: 26351732 [TBL] [Abstract][Full Text] [Related]
15. Supply and demand of some critical metals and present status of their recycling in WEEE. Zhang S; Ding Y; Liu B; Chang CC Waste Manag; 2017 Jul; 65():113-127. PubMed ID: 28412098 [TBL] [Abstract][Full Text] [Related]
16. Challenges for critical raw material recovery from WEEE - The case study of gallium. Ueberschaar M; Otto SJ; Rotter VS Waste Manag; 2017 Feb; 60():534-545. PubMed ID: 28089397 [TBL] [Abstract][Full Text] [Related]
17. How are WEEE doing? A global review of the management of electrical and electronic wastes. Ongondo FO; Williams ID; Cherrett TJ Waste Manag; 2011 Apr; 31(4):714-30. PubMed ID: 21146974 [TBL] [Abstract][Full Text] [Related]
18. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review. Wang R; Xu Z Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822 [TBL] [Abstract][Full Text] [Related]
19. Uncovering the Recycling Potential of "New" WEEE in China. Zeng X; Gong R; Chen WQ; Li J Environ Sci Technol; 2016 Feb; 50(3):1347-58. PubMed ID: 26709550 [TBL] [Abstract][Full Text] [Related]
20. Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE). Yuksekdag A; Kose-Mutlu B; Zeytuncu-Gokoglu B; Kumral M; Wiesner MR; Koyuncu I Environ Sci Pollut Res Int; 2022 Jan; 29(5):7772-7781. PubMed ID: 34476712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]