These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 26054963)
1. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals. Yliniemi J; Pesonen J; Tiainen M; Illikainen M Waste Manag; 2015 Sep; 43():273-82. PubMed ID: 26054963 [TBL] [Abstract][Full Text] [Related]
2. Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization. Sicong T; Jianguo J; Chang Z J Hazard Mater; 2011 Sep; 192(3):1609-15. PubMed ID: 21782326 [TBL] [Abstract][Full Text] [Related]
3. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies. Saqib N; Bäckström M J Environ Sci (China); 2015 Oct; 36():9-21. PubMed ID: 26456601 [TBL] [Abstract][Full Text] [Related]
4. Solidification/stabilization of fly ash from city refuse incinerator facility and heavy metal sludge with cement additives. Cerbo AA; Ballesteros F; Chen TC; Lu MC Environ Sci Pollut Res Int; 2017 Jan; 24(2):1748-1756. PubMed ID: 27796983 [TBL] [Abstract][Full Text] [Related]
5. Comparison of CaO's effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China. Hu HY; Liu H; Shen WQ; Luo GQ; Li AJ; Lu ZL; Yao H Chemosphere; 2013 Oct; 93(4):590-6. PubMed ID: 23800595 [TBL] [Abstract][Full Text] [Related]
6. Distribution of heavy metals from iron bath-melting separation process applied to municipal solid waste incineration fly ash. Wei CM; Liu QC; Wen J Environ Technol; 2009 Dec; 30(14):1503-9. PubMed ID: 20183994 [TBL] [Abstract][Full Text] [Related]
7. [Effects of sulphur compounds on the volatile characteristics of heavy metals in fly ash from the MSW and sewage sludge co-combustion plant during the disposal process with higher temperature]. Liu JY; Sun SY Huan Jing Ke Xue; 2012 Nov; 33(11):3990-8. PubMed ID: 23323436 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838 [TBL] [Abstract][Full Text] [Related]
9. Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash. Zhang D; Liu W; Hou H; He X Waste Manag Res; 2007 Oct; 25(5):402-7. PubMed ID: 17985665 [TBL] [Abstract][Full Text] [Related]
10. Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials. Cyr M; Idir R; Escadeillas G J Hazard Mater; 2012 Dec; 243():193-203. PubMed ID: 23122733 [TBL] [Abstract][Full Text] [Related]
11. Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator. Nam S; Namkoong W J Hazard Mater; 2012 Jan; 199-200():440-7. PubMed ID: 22152920 [TBL] [Abstract][Full Text] [Related]
12. Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Zhang Z; Li A; Wang X; Zhang L Waste Manag; 2016 Oct; 56():238-45. PubMed ID: 27432549 [TBL] [Abstract][Full Text] [Related]
13. Cotreatment of MSWI Fly Ash and Granulated Lead Smelting Slag Using a Geopolymer System. Liu DG; Ke Y; Min XB; Liang YJ; Wang ZB; Li YC; Fei JC; Yao LW; Xu H; Jiang GH Int J Environ Res Public Health; 2019 Jan; 16(1):. PubMed ID: 30626070 [TBL] [Abstract][Full Text] [Related]
14. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. Luna Galiano Y; Fernández Pereira C; Vale J J Hazard Mater; 2011 Jan; 185(1):373-81. PubMed ID: 20943314 [TBL] [Abstract][Full Text] [Related]
15. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
16. Leaching characteristics of lead from melting furnace fly ash generated by melting of incineration fly ash. Okada T; Tomikawa H J Environ Manage; 2012 Nov; 110():207-14. PubMed ID: 22789656 [TBL] [Abstract][Full Text] [Related]
17. Stabilization of heavy metals in MSWI fly ash using silica fume. Li X; Chen Q; Zhou Y; Tyrer M; Yu Y Waste Manag; 2014 Dec; 34(12):2494-504. PubMed ID: 25277825 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of chromium ore processing residue by alkali-activated composite binders and leaching characteristics. Peng G; Zhang P; Zeng L; Yu L; Li D Environ Sci Pollut Res Int; 2023 Jun; 30(27):71154-71170. PubMed ID: 37162678 [TBL] [Abstract][Full Text] [Related]
19. [Influence of additive on characteristic of slag during the process of melting fly ash from municipal solid waste incinerator]. Jiang YH; Xi BD; Li XJ; Wang Q; Zhang XX; Wei ZM Huan Jing Ke Xue; 2006 Nov; 27(11):2288-92. PubMed ID: 17326442 [TBL] [Abstract][Full Text] [Related]
20. The Evaluation of the Heavy Metal Leaching Behavior of MSWI-FA Added Alkali-Activated Materials Bricks by Using Different Leaching Test Methods. Xu P; Zhao Q; Qiu W; Xue Y Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30935069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]