These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 26055041)
1. Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment. Rivalland C; Madhkour S; Salvin P; Robert F Bioelectrochemistry; 2015 Dec; 106(Pt A):125-32. PubMed ID: 26055041 [TBL] [Abstract][Full Text] [Related]
2. Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms. Salvin P; Roos C; Robert F Bioresour Technol; 2012 Sep; 120():45-51. PubMed ID: 22784952 [TBL] [Abstract][Full Text] [Related]
3. Sampling natural biofilms: a new route to build efficient microbial anodes. Erable B; Roncato MA; Achouak W; Bergel A Environ Sci Technol; 2009 May; 43(9):3194-9. PubMed ID: 19534134 [TBL] [Abstract][Full Text] [Related]
4. Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms. Zhang J; Zhang E; Scott K; Burgess JG Environ Sci Technol; 2012 Mar; 46(5):2984-92. PubMed ID: 22352455 [TBL] [Abstract][Full Text] [Related]
5. Specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms. Pierra M; Carmona-Martínez AA; Trably E; Godon JJ; Bernet N Bioelectrochemistry; 2015 Dec; 106(Pt A):221-5. PubMed ID: 25717030 [TBL] [Abstract][Full Text] [Related]
6. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm. Erable B; Bergel A Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272 [TBL] [Abstract][Full Text] [Related]
7. Enrichment of Clostridia enhances Geobacter population and electron harvesting in a complex electroactive biofilm. Rivalland C; Radouani F; Gonzalez-Rizzo S; Robert F; Salvin P Bioelectrochemistry; 2022 Feb; 143():107954. PubMed ID: 34624726 [TBL] [Abstract][Full Text] [Related]
8. Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): phylogenetic affiliation and electrochemical activity of sediment bacteria. Martins G; Peixoto L; Ribeiro DC; Parpot P; Brito AG; Nogueira R Bioelectrochemistry; 2010 Apr; 78(1):67-71. PubMed ID: 19716775 [TBL] [Abstract][Full Text] [Related]
9. Various voltage productions by microbial fuel cells with sedimentary inocula taken from different sites in one freshwater lake. Song TS; Cai HY; Yan ZS; Zhao ZW; Jiang HL Bioresour Technol; 2012 Mar; 108():68-75. PubMed ID: 22264430 [TBL] [Abstract][Full Text] [Related]
10. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Yong YC; Yu YY; Zhang X; Song H Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059 [TBL] [Abstract][Full Text] [Related]
11. Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature. Mei X; Xing D; Yang Y; Liu Q; Zhou H; Guo C; Ren N Bioelectrochemistry; 2017 Oct; 117():29-33. PubMed ID: 28575837 [TBL] [Abstract][Full Text] [Related]
12. Influence of anode pretreatment on its microbial colonization. Liu JL; Lowy DA; Baumann RG; Tender LM J Appl Microbiol; 2007 Jan; 102(1):177-83. PubMed ID: 17184333 [TBL] [Abstract][Full Text] [Related]
13. Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics. Cercado B; Byrne N; Bertrand M; Pocaznoi D; Rimboud M; Achouak W; Bergel A Bioresour Technol; 2013 Apr; 134():276-84. PubMed ID: 23500585 [TBL] [Abstract][Full Text] [Related]
14. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550 [TBL] [Abstract][Full Text] [Related]
15. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Jung S; Regan JM Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426 [TBL] [Abstract][Full Text] [Related]
16. Impact of the start-up process on the microbial communities in biocathodes for electrosynthesis. Mateos R; Sotres A; Alonso RM; Escapa A; Morán A Bioelectrochemistry; 2018 Jun; 121():27-37. PubMed ID: 29331726 [TBL] [Abstract][Full Text] [Related]
17. From fundamentals to microbial power plants: electrochemically active biofilms. Bergel A; Feron D; Flemming HC Bioelectrochemistry; 2010 Apr; 78(1):1. PubMed ID: 19926537 [No Abstract] [Full Text] [Related]
18. Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Beecroft NJ; Zhao F; Varcoe JR; Slade RC; Thumser AE; Avignone-Rossa C Appl Microbiol Biotechnol; 2012 Jan; 93(1):423-37. PubMed ID: 21984392 [TBL] [Abstract][Full Text] [Related]
19. Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics. Rimboud M; Barakat M; Bergel A; Erable B Bioelectrochemistry; 2017 Aug; 116():24-32. PubMed ID: 28364576 [TBL] [Abstract][Full Text] [Related]
20. Impact of electrode micro- and nano-scale topography on the formation and performance of microbial electrodes. Champigneux P; Delia ML; Bergel A Biosens Bioelectron; 2018 Oct; 118():231-246. PubMed ID: 30098490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]