These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 2605519)
1. Reproducible stimulation of ciliary muscle contraction in the cynomolgus monkey via a permanent indwelling midbrain electrode. Crawford K; Terasawa E; Kaufman PL Brain Res; 1989 Dec; 503(2):265-72. PubMed ID: 2605519 [TBL] [Abstract][Full Text] [Related]
2. Reinnervation of primate ciliary muscle following ciliary ganglionectomy. Erickson-Lamy KA; Kaufman PL Invest Ophthalmol Vis Sci; 1987 Jun; 28(6):927-33. PubMed ID: 3583631 [TBL] [Abstract][Full Text] [Related]
3. Edinger-Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys. Ostrin LA; Glasser A Exp Eye Res; 2007 Feb; 84(2):302-13. PubMed ID: 17137577 [TBL] [Abstract][Full Text] [Related]
4. Parasympathetic denervation of the ciliary muscle following retinal photocoagulation. Kaufman PL Trans Am Ophthalmol Soc; 1990; 88():513-53. PubMed ID: 2095033 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of accommodation in primates. Glasser A; Kaufman PL Ophthalmology; 1999 May; 106(5):863-72. PubMed ID: 10328382 [TBL] [Abstract][Full Text] [Related]
6. In vivo videography of the rhesus monkey accommodative apparatus. Age-related loss of ciliary muscle response to central stimulation. Neider MW; Crawford K; Kaufman PL; Bito LZ Arch Ophthalmol; 1990 Jan; 108(1):69-74. PubMed ID: 2297335 [TBL] [Abstract][Full Text] [Related]
7. Parasympathetic denervation of the ciliary muscle following panretinal photocoagulation. Kaufman PL; Rohen JW; Gabelt BT; Eichhorn M; Wallow IH; Polansky JR Curr Eye Res; 1991 May; 10(5):437-55. PubMed ID: 1889229 [TBL] [Abstract][Full Text] [Related]
8. Hyperopia and loss of accommodation following ciliary muscle disinsertion in the cynomolgus monkey: physiologic and scanning electron microscopic studies. Kaufman PL; Rohen JW; Bárány EH Invest Ophthalmol Vis Sci; 1979 Jul; 18(7):665-73. PubMed ID: 109411 [TBL] [Abstract][Full Text] [Related]
9. Long-term reproducibility of Edinger-Westphal stimulated accommodation in rhesus monkeys. He L; Wendt M; Glasser A Exp Eye Res; 2013 Aug; 113():80-6. PubMed ID: 23722076 [TBL] [Abstract][Full Text] [Related]
10. Autonomic drugs and the accommodative system in rhesus monkeys. Ostrin LA; Glasser A Exp Eye Res; 2010 Jan; 90(1):104-12. PubMed ID: 19782072 [TBL] [Abstract][Full Text] [Related]
11. Computer image analysis of ultrasound biomicroscopy of primate accommodation. Schachar RA; Kamangar F Eye (Lond); 2006 Feb; 20(2):226-33. PubMed ID: 15818391 [TBL] [Abstract][Full Text] [Related]
12. The role of the iris in accommodation of rhesus monkeys. Crawford KS; Kaufman PL; Bito LZ Invest Ophthalmol Vis Sci; 1990 Oct; 31(10):2185-90. PubMed ID: 2211015 [TBL] [Abstract][Full Text] [Related]
14. The cynomolgus monkey as a model for orbital research. III. Effects on ocular physiology of lateral orbitotomy and isolation of the ciliary ganglion. Erickson KA; Gonnering RS; Kaufman PL; Dortzbach RK Curr Eye Res; 1984 Apr; 3(4):557-64. PubMed ID: 6713955 [TBL] [Abstract][Full Text] [Related]
15. [The parasympathetic direct pathway from the midbrain to the ciliary muscle in cats and monkeys]. Kimura S Nippon Ganka Gakkai Zasshi; 1991 Nov; 95(11):1031-6. PubMed ID: 1759642 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of accommodative fatigue in rhesus monkeys and humans. Vilupuru AS; Kasthurirangan S; Glasser A Vision Res; 2005 Jan; 45(2):181-91. PubMed ID: 15581919 [TBL] [Abstract][Full Text] [Related]