These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
758 related articles for article (PubMed ID: 26055544)
1. A Segmentation Framework of Pulmonary Nodules in Lung CT Images. Mukhopadhyay S J Digit Imaging; 2016 Feb; 29(1):86-103. PubMed ID: 26055544 [TBL] [Abstract][Full Text] [Related]
2. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset. Messay T; Hardie RC; Tuinstra TR Med Image Anal; 2015 May; 22(1):48-62. PubMed ID: 25791434 [TBL] [Abstract][Full Text] [Related]
3. Data analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative. Wang W; Luo J; Yang X; Lin H Acad Radiol; 2015 Apr; 22(4):488-95. PubMed ID: 25601306 [TBL] [Abstract][Full Text] [Related]
4. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Messay T; Hardie RC; Rogers SK Med Image Anal; 2010 Jun; 14(3):390-406. PubMed ID: 20346728 [TBL] [Abstract][Full Text] [Related]
5. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class. Wang Z; Xin J; Sun P; Lin Z; Yao Y; Gao X Comput Methods Programs Biomed; 2018 Aug; 162():197-209. PubMed ID: 29903487 [TBL] [Abstract][Full Text] [Related]
6. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Jacobs C; van Rikxoort EM; Murphy K; Prokop M; Schaefer-Prokop CM; van Ginneken B Eur Radiol; 2016 Jul; 26(7):2139-47. PubMed ID: 26443601 [TBL] [Abstract][Full Text] [Related]
7. 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets. Zhang W; Wang X; Li X; Chen J Comput Biol Med; 2018 Jan; 92():64-72. PubMed ID: 29154123 [TBL] [Abstract][Full Text] [Related]
8. Cloud-Based NoSQL Open Database of Pulmonary Nodules for Computer-Aided Lung Cancer Diagnosis and Reproducible Research. Ferreira Junior JR; Oliveira MC; de Azevedo-Marques PM J Digit Imaging; 2016 Dec; 29(6):716-729. PubMed ID: 27440183 [TBL] [Abstract][Full Text] [Related]
9. Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system. Jacobs C; van Rikxoort EM; Scholten ET; de Jong PA; Prokop M; Schaefer-Prokop C; van Ginneken B Invest Radiol; 2015 Mar; 50(3):168-73. PubMed ID: 25478740 [TBL] [Abstract][Full Text] [Related]
10. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Lassen BC; Jacobs C; Kuhnigk JM; van Ginneken B; van Rikxoort EM Phys Med Biol; 2015 Feb; 60(3):1307-23. PubMed ID: 25591989 [TBL] [Abstract][Full Text] [Related]
11. Measuring Interobserver Disagreement in Rating Diagnostic Characteristics of Pulmonary Nodule Using the Lung Imaging Database Consortium and Image Database Resource Initiative. Lin H; Huang C; Wang W; Luo J; Yang X; Liu Y Acad Radiol; 2017 Apr; 24(4):401-410. PubMed ID: 28169141 [TBL] [Abstract][Full Text] [Related]
12. Ground-glass nodule segmentation in chest CT images using asymmetric multi-phase deformable model and pulmonary vessel removal. Jung J; Hong H; Goo JM Comput Biol Med; 2018 Jan; 92():128-138. PubMed ID: 29175099 [TBL] [Abstract][Full Text] [Related]
13. Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. Han H; Li L; Han F; Song B; Moore W; Liang Z IEEE J Biomed Health Inform; 2015 Mar; 19(2):648-59. PubMed ID: 25486657 [TBL] [Abstract][Full Text] [Related]
14. Potential lung nodules identification for characterization by variable multistep threshold and shape indices from CT images. Iqbal S; Iqbal K; Arif F; Shaukat A; Khanum A Comput Math Methods Med; 2014; 2014():241647. PubMed ID: 25506388 [TBL] [Abstract][Full Text] [Related]
15. Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT. Guo W; Li Q Med Phys; 2014 Sep; 41(9):091906. PubMed ID: 25186393 [TBL] [Abstract][Full Text] [Related]
16. An adaptive morphology based segmentation technique for lung nodule detection in thoracic CT image. Halder A; Chatterjee S; Dey D; Kole S; Munshi S Comput Methods Programs Biomed; 2020 Dec; 197():105720. PubMed ID: 32877818 [TBL] [Abstract][Full Text] [Related]
17. Deep Deconvolutional Residual Network Based Automatic Lung Nodule Segmentation. Singadkar G; Mahajan A; Thakur M; Talbar S J Digit Imaging; 2020 Jun; 33(3):678-684. PubMed ID: 32026218 [TBL] [Abstract][Full Text] [Related]
18. Soft computing approach to 3D lung nodule segmentation in CT. Badura P; Pietka E Comput Biol Med; 2014 Oct; 53():230-43. PubMed ID: 25173811 [TBL] [Abstract][Full Text] [Related]
19. Shape-based computer-aided detection of lung nodules in thoracic CT images. Ye X; Lin X; Dehmeshki J; Slabaugh G; Beddoe G IEEE Trans Biomed Eng; 2009 Jul; 56(7):1810-20. PubMed ID: 19527950 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Way TW; Hadjiiski LM; Sahiner B; Chan HP; Cascade PN; Kazerooni EA; Bogot N; Zhou C Med Phys; 2006 Jul; 33(7):2323-37. PubMed ID: 16898434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]