BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26056307)

  • 1. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment.
    Balakrishnan M; Sacia ER; Sreekumar S; Gunbas G; Gokhale AA; Scown CD; Toste FD; Bell AT
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7645-9. PubMed ID: 26056307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass.
    Shylesh S; Gokhale AA; Ho CR; Bell AT
    Acc Chem Res; 2017 Oct; 50(10):2589-2597. PubMed ID: 28930430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence.
    Sreekumar S; Balakrishnan M; Goulas K; Gunbas G; Gokhale AA; Louie L; Grippo A; Scown CD; Bell AT; Toste FD
    ChemSusChem; 2015 Aug; 8(16):2609-14. PubMed ID: 26216783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Biomass-Based Automotive Lubricants by Reductive Etherification.
    Jadhav D; Grippo AM; Shylesh S; Gokhale AA; Redshaw J; Bell AT
    ChemSusChem; 2017 Jun; 10(11):2527-2533. PubMed ID: 28406578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Production of Jet Fuels from Biomass.
    Díaz-Pérez MA; Serrano-Ruiz JC
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32059552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses.
    Tan ECD; Hawkins TR; Lee U; Tao L; Meyer PA; Wang M; Thompson T
    Environ Sci Technol; 2021 Jun; 55(11):7561-7570. PubMed ID: 33998807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.
    Bi P; Wang J; Zhang Y; Jiang P; Wu X; Liu J; Xue H; Wang T; Li Q
    Bioresour Technol; 2015 May; 183():10-7. PubMed ID: 25710678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.
    Liu Q; Xu G; Wang X; Liu X; Mu X
    ChemSusChem; 2016 Dec; 9(24):3465-3472. PubMed ID: 27896953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle analysis of fuel production from fast pyrolysis of biomass.
    Han J; Elgowainy A; Dunn JB; Wang MQ
    Bioresour Technol; 2013 Apr; 133():421-8. PubMed ID: 23454388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of novel thermochemical - biochemical biomass-to-liquid pathways for sustainable aviation and maritime fuel production.
    Kourkoumpas DS; Βon A; Sagani A; Atsonios K; Grammelis P; Karellas S; Kakaras E
    Bioresour Technol; 2024 Feb; 393():130115. PubMed ID: 38013031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.
    Sacia ER; Balakrishnan M; Deaner MH; Goulas KA; Toste FD; Bell AT
    ChemSusChem; 2015 May; 8(10):1726-36. PubMed ID: 25891778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-cycle analysis of bio-based aviation fuels.
    Han J; Elgowainy A; Cai H; Wang MQ
    Bioresour Technol; 2013 Dec; 150():447-56. PubMed ID: 23978607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Life-Cycle Emissions of Biofuels for Marine Applications: Hydrothermal Liquefaction of Wet Wastes, Pyrolysis of Wood, Fischer-Tropsch Synthesis of Landfill Gas, and Solvolysis of Wood.
    Masum FH; Zaimes GG; Tan ECD; Li S; Dutta A; Ramasamy KK; Hawkins TR
    Environ Sci Technol; 2023 Aug; 57(34):12701-12712. PubMed ID: 37590157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.
    Alves JC; Poppi RJ
    Analyst; 2013 Nov; 138(21):6477-87. PubMed ID: 23991427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts.
    Adom F; Dunn JB; Han J; Sather N
    Environ Sci Technol; 2014 Dec; 48(24):14624-31. PubMed ID: 25380298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.
    Staples MD; Olcay H; Malina R; Trivedi P; Pearlson MN; Strzepek K; Paltsev SV; Wollersheim C; Barrett SR
    Environ Sci Technol; 2013; 47(21):12557-65. PubMed ID: 24066845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.
    Budsberg E; Crawford JT; Morgan H; Chin WS; Bura R; Gustafson R
    Biotechnol Biofuels; 2016; 9():170. PubMed ID: 27525039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.
    Hill J; Nelson E; Tilman D; Polasky S; Tiffany D
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11206-10. PubMed ID: 16837571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.