BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 26056386)

  • 1. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.
    Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G
    Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Golgi fragmentation and sphingomyelin transport to Chlamydia trachomatis during penicillin-induced persistence do not depend on the cytosolic presence of the chlamydial protease CPAF.
    Dille S; Herbst K; Volceanov L; Nölke T; Kretz O; Häcker G
    PLoS One; 2014; 9(7):e103220. PubMed ID: 25068694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waddlia chondrophila, a Chlamydia-related bacterium, has a negative impact on human spermatozoa.
    Baud D; Vulliemoz N; Ammerdorffer A; Gyger J; Greub G; Castella V; Stojanov M
    Hum Reprod; 2018 Jan; 33(1):3-10. PubMed ID: 29145645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amoebal host range, host-free survival and disinfection susceptibility of environmental Chlamydiae as compared to Chlamydia trachomatis.
    Coulon C; Eterpi M; Greub G; Collignon A; McDonnell G; Thomas V
    FEMS Immunol Med Microbiol; 2012 Apr; 64(3):364-73. PubMed ID: 22141597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waddlia chondrophila and Chlamydia trachomatis antibodies in screening infertile women for tubal pathology.
    Verweij SP; Kebbi-Beghdadi C; Land JA; Ouburg S; Morré SA; Greub G
    Microbes Infect; 2015; 17(11-12):745-8. PubMed ID: 26428856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waddlia chondrophila enters and multiplies within human macrophages.
    Goy G; Croxatto A; Greub G
    Microbes Infect; 2008 Apr; 10(5):556-62. PubMed ID: 18424154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia trachomatis remodels stable microtubules to coordinate Golgi stack recruitment to the chlamydial inclusion surface.
    Al-Zeer MA; Al-Younes HM; Kerr M; Abu-Lubad M; Gonzalez E; Brinkmann V; Meyer TF
    Mol Microbiol; 2014 Dec; 94(6):1285-97. PubMed ID: 25315131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early intracellular trafficking of Waddlia chondrophila in human macrophages.
    Croxatto A; Greub G
    Microbiology (Reading); 2010 Feb; 156(Pt 2):340-355. PubMed ID: 19926655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion.
    Carabeo RA; Mead DJ; Hackstadt T
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6771-6. PubMed ID: 12743366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process.
    Grieshaber SS; Grieshaber NA; Hackstadt T
    J Cell Sci; 2003 Sep; 116(Pt 18):3793-802. PubMed ID: 12902405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development.
    Elwell CA; Jiang S; Kim JH; Lee A; Wittmann T; Hanada K; Melancon P; Engel JN
    PLoS Pathog; 2011 Sep; 7(9):e1002198. PubMed ID: 21909260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of
    van Dooremalen WTM; Verweij SP; den Hartog JE; Kebbi-Beghdadi C; Ouburg S; Greub G; Morré SA; Ammerdorffer A
    Microorganisms; 2020 Jun; 8(6):. PubMed ID: 32560559
    [No Abstract]   [Full Text] [Related]  

  • 14. Chlamydia trachomatis and chlamydia-like bacteria: new enemies of human pregnancies.
    Ammerdorffer A; Stojanov M; Greub G; Baud D
    Curr Opin Infect Dis; 2017 Jun; 30(3):289-296. PubMed ID: 28306562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamin-mediated lipid acquisition is essential for Chlamydia trachomatis development.
    Gurumurthy RK; Chumduri C; Karlas A; Kimmig S; Gonzalez E; Machuy N; Rudel T; Meyer TF
    Mol Microbiol; 2014 Oct; 94(1):186-201. PubMed ID: 25116793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The
    Ardissone S; Greub G
    Appl Environ Microbiol; 2024 Feb; 90(2):e0068123. PubMed ID: 38214519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis.
    Robertson DK; Gu L; Rowe RK; Beatty WL
    PLoS Pathog; 2009 Nov; 5(11):e1000664. PubMed ID: 19936056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication.
    Capmany A; Damiani MT
    PLoS One; 2010 Nov; 5(11):e14084. PubMed ID: 21124879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CPAF: a Chlamydial protease in search of an authentic substrate.
    Chen AL; Johnson KA; Lee JK; Sütterlin C; Tan M
    PLoS Pathog; 2012; 8(8):e1002842. PubMed ID: 22876181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction.
    Heuer D; Rejman Lipinski A; Machuy N; Karlas A; Wehrens A; Siedler F; Brinkmann V; Meyer TF
    Nature; 2009 Feb; 457(7230):731-5. PubMed ID: 19060882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.