BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26056623)

  • 1. NxRepair: error correction in de novo sequence assembly using Nextera mate pairs.
    Murphy RR; O'Connell J; Cox AJ; Schulz-Trieglaff O
    PeerJ; 2015; 3():e996. PubMed ID: 26056623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies.
    Wetzel J; Kingsford C; Pop M
    BMC Bioinformatics; 2011 Apr; 12():95. PubMed ID: 21486487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEC: Misassembly Error Correction in contigs based on distribution of paired-end reads and statistics of GC-contents.
    Wu B; Li M; Liao X; Luo J; Wu F; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Oct; ():. PubMed ID: 30334805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly scaffolding with PE-contaminated mate-pair libraries.
    Sahlin K; Chikhi R; Arvestad L
    Bioinformatics; 2016 Jul; 32(13):1925-32. PubMed ID: 27153683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the "
    Zhou T; Lu L; Li C
    Ecol Evol; 2023 Jan; 13(1):e9745. PubMed ID: 36644701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tigmint: correcting assembly errors using linked reads from large molecules.
    Jackman SD; Coombe L; Chu J; Warren RL; Vandervalk BP; Yeo S; Xue Z; Mohamadi H; Bohlmann J; Jones SJM; Birol I
    BMC Bioinformatics; 2018 Oct; 19(1):393. PubMed ID: 30367597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization and cost-saving in tagmentation-based mate-pair library preparation and sequencing.
    Tatsumi K; Nishimura O; Itomi K; Tanegashima C; Kuraku S
    Biotechniques; 2015 May; 58(5):253-7. PubMed ID: 25967904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinement of Draft Genome Assemblies of Pigeonpea (
    Marla SS; Mishra P; Maurya R; Singh M; Wankhede DP; Kumar A; Yadav MC; Subbarao N; Singh SK; Kumar R
    Front Genet; 2020; 11():607432. PubMed ID: 33384719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dnAQET: a framework to compute a consolidated metric for benchmarking quality of de novo assemblies.
    Yavas G; Hong H; Xiao W
    BMC Genomics; 2019 Sep; 20(1):706. PubMed ID: 31510940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving mammalian genome scaffolding using large insert mate-pair next-generation sequencing.
    van Heesch S; Kloosterman WP; Lansu N; Ruzius FP; Levandowsky E; Lee CC; Zhou S; Goldstein S; Schwartz DC; Harkins TT; Guryev V; Cuppen E
    BMC Genomics; 2013 Apr; 14():257. PubMed ID: 23590730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving draft genome contiguity with reference-derived in silico mate-pair libraries.
    Grau JH; Hackl T; Koepfli KP; Hofreiter M
    Gigascience; 2018 May; 7(5):. PubMed ID: 29688527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ReMILO: reference assisted misassembly detection algorithm using short and long reads.
    Bao E; Song C; Lan L
    Bioinformatics; 2018 Jan; 34(1):24-32. PubMed ID: 28961789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembling short reads from jumping libraries with large insert sizes.
    Vasilinetc I; Prjibelski AD; Gurevich A; Korobeynikov A; Pevzner PA
    Bioinformatics; 2015 Oct; 31(20):3262-8. PubMed ID: 26040456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LDscaff: LD-based scaffolding of de novo genome assemblies.
    Zhao Z; Zhou Y; Wang S; Zhang X; Wang C; Li S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 21):570. PubMed ID: 33371875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single molecule sequencing-guided scaffolding and correction of draft assemblies.
    Zhu S; Chen DZ; Emrich SJ
    BMC Genomics; 2017 Dec; 18(Suppl 10):879. PubMed ID: 29244003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PECC: Correcting contigs based on paired-end read distribution.
    Li M; Wu B; Yan X; Luo J; Pan Y; Wu FX; Wang J
    Comput Biol Chem; 2017 Aug; 69():178-184. PubMed ID: 28545961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISEA: Iterative Seed-Extension Algorithm for De Novo Assembly Using Paired-End Information and Insert Size Distribution.
    Li M; Liao Z; He Y; Wang J; Luo J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):916-925. PubMed ID: 27076460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling™ Data.
    Madoui MA; Dossat C; d'Agata L; van Oeveren J; van der Vossen E; Aury JM
    BMC Bioinformatics; 2016 Mar; 17():115. PubMed ID: 26936254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput long paired-end sequencing of a Fosmid library by PacBio.
    Dai Z; Li T; Li J; Han Z; Pan Y; Tang S; Diao X; Luo M
    Plant Methods; 2019; 15():142. PubMed ID: 31788019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.