BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26056725)

  • 1. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles.
    Szymanski CJ; Munusamy P; Mihai C; Xie Y; Hu D; Gilles MK; Tyliszczak T; Thevuthasan S; Baer DR; Orr G
    Biomaterials; 2015 Sep; 62():147-54. PubMed ID: 26056725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of the Ce(iii)/Ce(iv) ratio on intracellular localization in ceria nanoparticles internalized by human cells.
    Ferraro D; Tredici IG; Ghigna P; Castillo-Michel H; Falqui A; Di Benedetto C; Alberti G; Ricci V; Anselmi-Tamburini U; Sommi P
    Nanoscale; 2017 Jan; 9(4):1527-1538. PubMed ID: 28067927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical and biological interactions between cerium oxide nanoparticles and a 1,8-naphthalimide derivative.
    Pulido-Reyes G; Martín E; Gu Coronado JL; Leganes F; Rosal R; Fernández-Piñas F
    J Photochem Photobiol B; 2017 Jul; 172():61-69. PubMed ID: 28527428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles.
    Chen BH; Stephen Inbaraj B
    Crit Rev Biotechnol; 2018 Nov; 38(7):1003-1024. PubMed ID: 29402135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, physico-chemical characterization, and antioxidant effect of PEGylated cerium oxide nanoparticles.
    Xue Y; Balmuri SR; Patel A; Sant V; Sant S
    Drug Deliv Transl Res; 2018 Apr; 8(2):357-367. PubMed ID: 28589454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates.
    Naganuma T; Traversa E
    Nanoscale; 2014 Jun; 6(12):6637-45. PubMed ID: 24812662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerium oxide nanoparticles: applications and prospects in nanomedicine.
    Das S; Dowding JM; Klump KE; McGinnis JF; Self W; Seal S
    Nanomedicine (Lond); 2013 Sep; 8(9):1483-508. PubMed ID: 23987111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The change in antioxidant properties of dextran-coated redox active nanoparticles due to synergetic photoreduction-oxidation.
    Barkam S; Das S; Saraf S; McCormack R; Richardson D; Atencio L; Moosavifazel V; Seal S
    Chemistry; 2015 Sep; 21(36):12646-56. PubMed ID: 26190768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vitro interaction of cerium oxide nanoparticles with hemoglobin, insulin, and dsDNA at 310.15 K: Physicochemical, spectroscopic and in-silico study.
    Chetty R; Singh M
    Int J Biol Macromol; 2020 Aug; 156():1022-1044. PubMed ID: 32171830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerium oxide nanoparticles prevent apoptosis in primary cortical culture by stabilizing mitochondrial membrane potential.
    Arya A; Sethy NK; Das M; Singh SK; Das A; Ujjain SK; Sharma RK; Sharma M; Bhargava K
    Free Radic Res; 2014 Jul; 48(7):784-93. PubMed ID: 24650039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inhibition of partial EMT-induced tumour cell growth by cerium valence states of extracellular ceria nanoparticles for anticancer treatment.
    Naganuma T
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113794. PubMed ID: 38382224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications.
    Gupta A; Das S; Neal CJ; Seal S
    J Mater Chem B; 2016 May; 4(19):3195-3202. PubMed ID: 32263255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity.
    Caputo F; Mameli M; Sienkiewicz A; Licoccia S; Stellacci F; Ghibelli L; Traversa E
    Sci Rep; 2017 Jul; 7(1):4636. PubMed ID: 28680107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: release kinetics and biological activity.
    Singh V; Singh S; Das S; Kumar A; Self WT; Seal S
    Nanoscale; 2012 Apr; 4(8):2597-605. PubMed ID: 22419352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ce³+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles.
    Celardo I; De Nicola M; Mandoli C; Pedersen JZ; Traversa E; Ghibelli L
    ACS Nano; 2011 Jun; 5(6):4537-49. PubMed ID: 21612305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules.
    Rollin-Genetet F; Seidel C; Artells E; Auffan M; Thiéry A; Vidaud C
    Chem Res Toxicol; 2015 Dec; 28(12):2304-12. PubMed ID: 26566067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant Activity and Toxicity Study of Cerium Oxide Nanoparticles Stabilized with Innovative Functional Copolymers.
    Goujon G; Baldim V; Roques C; Bia N; Seguin J; Palmier B; Graillot A; Loubat C; Mignet N; Margaill I; Berret JF; Beray-Berthat V
    Adv Healthc Mater; 2021 Jun; 10(11):e2100059. PubMed ID: 33890419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoceria, the versatile nanoparticles: Promising biomedical applications.
    Saifi MA; Seal S; Godugu C
    J Control Release; 2021 Oct; 338():164-189. PubMed ID: 34425166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(acrylic acid)-mediated synthesis of cerium oxide nanoparticles with variable oxidation states and their effect on regulating the intracellular ROS level.
    Ju X; Hubalek Kalbacova M; Šmíd B; Johánek V; Janata M; Dinhová TN; Bělinová T; Mazur M; Vorokhta M; Strnad L
    J Mater Chem B; 2021 Sep; 9(36):7386-7400. PubMed ID: 34551046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation.
    Naganuma T; Traversa E
    Biomaterials; 2014 May; 35(15):4441-53. PubMed ID: 24612920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.