BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26056784)

  • 1. The radish genome and comprehensive gene expression profile of tuberous root formation and development.
    Mitsui Y; Shimomura M; Komatsu K; Namiki N; Shibata-Hatta M; Imai M; Katayose Y; Mukai Y; Kanamori H; Kurita K; Kagami T; Wakatsuki A; Ohyanagi H; Ikawa H; Minaka N; Nakagawa K; Shiwa Y; Sasaki T
    Sci Rep; 2015 Jun; 5():10835. PubMed ID: 26056784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism.
    Wang Y; Pan Y; Liu Z; Zhu X; Zhai L; Xu L; Yu R; Gong Y; Liu L
    BMC Genomics; 2013 Nov; 14(1):836. PubMed ID: 24279309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.).
    Jeong YM; Chung WH; Mun JH; Kim N; Yu HJ
    Gene; 2014 Nov; 551(1):39-48. PubMed ID: 25151309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway.
    Gao J; Li WB; Liu HF; Chen FB
    BMC Mol Cell Biol; 2019 Oct; 20(1):45. PubMed ID: 31646986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L.).
    Yu R; Wang Y; Xu L; Zhu X; Zhang W; Wang R; Gong Y; Limera C; Liu L
    BMC Plant Biol; 2015 Feb; 15():30. PubMed ID: 25644462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing.
    Feng H; Xu L; Wang Y; Tang M; Zhu X; Zhang W; Sun X; Nie S; Muleke EM; Liu L
    Mol Genet Genomics; 2017 Oct; 292(5):1151-1163. PubMed ID: 28667404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved Raphanus sativus cv. WK10039 genome localizes centromeres, uncovers variation of DNA methylation and resolves arrangement of the ancestral Brassica genome blocks in radish chromosomes.
    Cho A; Jang H; Baek S; Kim MJ; Yim B; Huh S; Kwon SH; Yu HJ; Mun JH
    Theor Appl Genet; 2022 May; 135(5):1731-1750. PubMed ID: 35249126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root.
    Gancheva MS; Dodueva IE; Lebedeva MA; Tvorogova VE; Tkachenko AA; Lutova LA
    BMC Plant Biol; 2016 Jan; 16 Suppl 1(Suppl 1):7. PubMed ID: 26821718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.
    Jeong YM; Kim N; Ahn BO; Oh M; Chung WH; Chung H; Jeong S; Lim KB; Hwang YJ; Kim GB; Baek S; Choi SB; Hyung DJ; Lee SW; Sohn SH; Kwon SJ; Jin M; Seol YJ; Chae WB; Choi KJ; Park BS; Yu HJ; Mun JH
    Theor Appl Genet; 2016 Jul; 129(7):1357-1372. PubMed ID: 27038817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing.
    Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L
    PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish (Raphanus sativus L.).
    Wang J; Qiu Y; Cheng F; Chen X; Zhang X; Wang H; Song J; Duan M; Yang H; Li X
    BMC Genomics; 2017 Dec; 18(1):981. PubMed ID: 29258434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome sequence and analysis of a Japanese radish (Raphanus sativus) cultivar named 'Sakurajima Daikon' possessing giant root.
    Shirasawa K; Hirakawa H; Fukino N; Kitashiba H; Isobe S
    DNA Res; 2020 Apr; 27(2):. PubMed ID: 32426809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation.
    Xu L; Wang Y; Dong J; Zhang W; Tang M; Zhang W; Wang K; Chen Y; Zhang X; He Q; Zhang X; Wang K; Wang L; Ma Y; Xia K; Liu L
    Plant Biotechnol J; 2023 May; 21(5):990-1004. PubMed ID: 36648398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L
    BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting Root Proteome Changes Reveals New Insight into Cadmium Stress Response in Radish (Raphanus sativus L.).
    Xu L; Wang Y; Zhang F; Tang M; Chen Y; Wang J; Karanja BK; Luo X; Zhang W; Liu L
    Plant Cell Physiol; 2017 Nov; 58(11):1901-1913. PubMed ID: 29016946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of candidate domestication regions in the radish genome based on high-depth resequencing analysis of 17 genotypes.
    Kim N; Jeong YM; Jeong S; Kim GB; Baek S; Kwon YE; Cho A; Choi SB; Kim J; Lim WJ; Kim KH; Park W; Kim JY; Kim JH; Yim B; Lee YJ; Chun BM; Lee YP; Park BS; Yu HJ; Mun JH
    Theor Appl Genet; 2016 Sep; 129(9):1797-814. PubMed ID: 27377547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide sRNA and mRNA transcriptomic profiling insights into dynamic regulation of taproot thickening in radish (Raphanus sativus L.).
    Xie Y; Ying J; Xu L; Wang Y; Dong J; Chen Y; Tang M; Li C; M'mbone Muleke E; Liu L
    BMC Plant Biol; 2020 Aug; 20(1):373. PubMed ID: 32770962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Draft sequences of the radish (Raphanus sativus L.) genome.
    Kitashiba H; Li F; Hirakawa H; Kawanabe T; Zou Z; Hasegawa Y; Tonosaki K; Shirasawa S; Fukushima A; Yokoi S; Takahata Y; Kakizaki T; Ishida M; Okamoto S; Sakamoto K; Shirasawa K; Tabata S; Nishio T
    DNA Res; 2014 Oct; 21(5):481-90. PubMed ID: 24848699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification and characterization of the bHLH gene family and analysis of their potential relevance to chlorophyll metabolism in Raphanus sativus L.
    Wang R; Li Y; Gao M; Han M; Liu H
    BMC Genomics; 2022 Aug; 23(1):548. PubMed ID: 35915410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress response and programmed cell death guided by NAC013 modulate pithiness in radish taproots.
    Hoang NV; Park S; Park C; Suh H; Kim ST; Chae E; Kang BC; Lee JY
    Plant J; 2022 Jan; 109(1):144-163. PubMed ID: 34724278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.