These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26056817)

  • 1. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.
    Hu XP; Yang Y; Ma BG
    Sci Rep; 2015 Jun; 5():11113. PubMed ID: 26056817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Community control in cellular protein production: consequences for amino acid starvation.
    Heldt FS; Brackley CA; Grebogi C; Thiel M
    Philos Trans A Math Phys Eng Sci; 2015 Dec; 373(2056):. PubMed ID: 26527812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of codon adaptation on codon-level and gene-level translation efficiency in vivo.
    Nakahigashi K; Takai Y; Shiwa Y; Wada M; Honma M; Yoshikawa H; Tomita M; Kanai A; Mori H
    BMC Genomics; 2014 Dec; 15(1):1115. PubMed ID: 25512115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for codon order in translation dynamics.
    Cannarozzi G; Schraudolph NN; Faty M; von Rohr P; Friberg MT; Roth AC; Gonnet P; Gonnet G; Barral Y
    Cell; 2010 Apr; 141(2):355-67. PubMed ID: 20403329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean of the typical decoding rates: a new translation efficiency index based on the analysis of ribosome profiling data.
    Dana A; Tuller T
    G3 (Bethesda); 2014 Dec; 5(1):73-80. PubMed ID: 25452418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition for amino acid flux among translation, growth and detoxification in bacteria.
    Ferro I; Chelysheva I; Ignatova Z
    RNA Biol; 2018; 15(8):991-994. PubMed ID: 28296576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative model for mRNA translation in Saccharomyces cerevisiae.
    You T; Coghill GM; Brown AJ
    Yeast; 2010 Oct; 27(10):785-800. PubMed ID: 20306461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate.
    Gorochowski TE; Ignatova Z; Bovenberg RA; Roubos JA
    Nucleic Acids Res; 2015 Mar; 43(6):3022-32. PubMed ID: 25765653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-adaption of tRNA gene copy number and amino acid usage influences translation rates in three life domains.
    Du MZ; Wei W; Qin L; Liu S; Zhang AY; Zhang Y; Zhou H; Guo FB
    DNA Res; 2017 Dec; 24(6):623-633. PubMed ID: 28992099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational regulation of GCN4 and the general amino acid control of yeast.
    Hinnebusch AG
    Annu Rev Microbiol; 2005; 59():407-50. PubMed ID: 16153175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid composition is correlated with protein abundance in Escherichia coli: can this be due to optimization of translational efficiency?
    Shpaer EG
    Protein Seq Data Anal; 1989 Feb; 2(2):107-10. PubMed ID: 2652142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis.
    Kahali B; Basak S; Ghosh TC
    Biochem Biophys Res Commun; 2007 Mar; 354(3):693-9. PubMed ID: 17258174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy.
    Sørensen MA
    J Mol Biol; 2001 Mar; 307(3):785-98. PubMed ID: 11273701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein charge distribution in proteomes and its impact on translation.
    Requião RD; Fernandes L; de Souza HJA; Rossetto S; Domitrovic T; Palhano FL
    PLoS Comput Biol; 2017 May; 13(5):e1005549. PubMed ID: 28531225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization.
    Mitarai N; Sneppen K; Pedersen S
    J Mol Biol; 2008 Sep; 382(1):236-45. PubMed ID: 18619977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Codon Mismatch on the Protein Translation System.
    Zhang D; Chen D; Cao L; Li G; Cheng H
    PLoS One; 2016; 11(2):e0148302. PubMed ID: 26840415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome traffic in E. coli and regulation of gene expression.
    Lesnik T; Solomovici J; Deana A; Ehrlich R; Reiss C
    J Theor Biol; 2000 Jan; 202(2):175-85. PubMed ID: 10640436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.
    Taira H; Hohsaka T; Sisido M
    Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating Gene Expression and Codon-Specific Translational Efficiencies, Mutation Biases, and Selection Coefficients from Genomic Data Alone.
    Gilchrist MA; Chen WC; Shah P; Landerer CL; Zaretzki R
    Genome Biol Evol; 2015 May; 7(6):1559-79. PubMed ID: 25977456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.