BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

689 related articles for article (PubMed ID: 26056861)

  • 1. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-layer effect in graphene-enhanced Raman scattering.
    Ling X; Zhang J
    Small; 2010 Sep; 6(18):2020-5. PubMed ID: 20730826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere.
    Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J
    Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene.
    Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L
    Front Chem; 2022; 10():832282. PubMed ID: 35355787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular selectivity of graphene-enhanced Raman scattering.
    Huang S; Ling X; Liang L; Song Y; Fang W; Zhang J; Kong J; Meunier V; Dresselhaus MS
    Nano Lett; 2015 May; 15(5):2892-901. PubMed ID: 25821897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy.
    Silver A; Kitadai H; Liu H; Granzier-Nakajima T; Terrones M; Ling X; Huang S
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30986978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.
    Huh S; Park J; Kim YS; Kim KS; Hong BH; Nam JM
    ACS Nano; 2011 Dec; 5(12):9799-806. PubMed ID: 22070659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chemical and structural feature of graphene on surface enhanced Raman scattering.
    Han DJ; Choi KS; Liu F; Seo TS
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8154-61. PubMed ID: 24266208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine.
    Xu S; Man B; Jiang S; Wang J; Wei J; Xu S; Liu H; Gao S; Liu H; Li Z; Li H; Qiu H
    ACS Appl Mater Interfaces; 2015 May; 7(20):10977-87. PubMed ID: 25941901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can graphene be used as a substrate for Raman enhancement?
    Ling X; Xie L; Fang Y; Xu H; Zhang H; Kong J; Dresselhaus MS; Zhang J; Liu Z
    Nano Lett; 2010 Feb; 10(2):553-61. PubMed ID: 20039694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring.
    Zhang L; Jiang C; Zhang Z
    Nanoscale; 2013 May; 5(9):3773-9. PubMed ID: 23535912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency shift in graphene-enhanced Raman signal of molecules.
    Yaghobian F; Korn T; Schüller C
    Chemphyschem; 2012 Dec; 13(18):4271-5. PubMed ID: 23132764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite.
    Xie Y; Li Y; Niu L; Wang H; Qian H; Yao W
    Talanta; 2012 Oct; 100():32-7. PubMed ID: 23141308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong Dependence of Surface Enhanced Raman Scattering on Structure of Graphene Oxide Film.
    Wang L; Zhang Y; Yang Y; Zhang J
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30002326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing Chemical Raman Enhancement for Understanding Organic Adsorbate Binding on Metal Surfaces.
    Zayak AT; Choo H; Hu YS; Gargas DJ; Cabrini S; Bokor J; Schuck PJ; Neaton JB
    J Phys Chem Lett; 2012 May; 3(10):1357-62. PubMed ID: 26286783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection.
    Qiu H; Huo Y; Li Z; Zhang C; Chen P; Jiang S; Xu S; Ma Y; Wang S; Li H
    Chemphyschem; 2015 Oct; 16(14):2953-60. PubMed ID: 26266687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics.
    Qian Z; Cheng Y; Zhou X; Wu J; Xu G
    J Colloid Interface Sci; 2013 May; 397():103-7. PubMed ID: 23425548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets.
    Yu X; Cai H; Zhang W; Li X; Pan N; Luo Y; Wang X; Hou JG
    ACS Nano; 2011 Feb; 5(2):952-8. PubMed ID: 21210657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.