These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 26056986)
21. Förster's resonance energy transfer between Fullerene C60 and Coumarin C440. Qaiser D; Khan MS; Singh RD; Khan ZH; Chawla S Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1065-8. PubMed ID: 20869302 [TBL] [Abstract][Full Text] [Related]
22. Structural and fluorescence quenching characterization of hematite nanoparticles. Al-Kady AS; Gaber M; Hussein MM; Ebeid el-ZM Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):398-405. PubMed ID: 21925929 [TBL] [Abstract][Full Text] [Related]
23. Selective turn-on fluorescence assay of 6-thioguanine by using harmine-modified silver nanoparticles. Amjadi M; Farzampour L Luminescence; 2014 Sep; 29(6):689-94. PubMed ID: 24288350 [TBL] [Abstract][Full Text] [Related]
24. Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles. Park HW; Alam SM; Lee SH; Karim MM; Wabaidur SM; Kang M; Choi JH Luminescence; 2009; 24(6):367-71. PubMed ID: 19424962 [TBL] [Abstract][Full Text] [Related]
25. Bimolecular fluorescence quenching reactions of the biologically active coumarin composite 2-acetyl-3H-benzo[f]chromen-3-one in different solvents. Koppal VV; Melavanki RM; Kusanur RA; Patil NR Luminescence; 2018 Sep; 33(6):1019-1025. PubMed ID: 29920943 [TBL] [Abstract][Full Text] [Related]
26. Photoinduced intermolecular electron transfer from dimethyl aniline to 7-amino coumarin dyes in the surface of beta-cyclodextrin. Chakraborty A; Seth D; Chakrabarty D; Sarkar N Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jun; 64(3):801-8. PubMed ID: 16458585 [TBL] [Abstract][Full Text] [Related]
27. Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods. Zhang W; Zhang Q; Wang F; Yuan L; Xu Z; Jiang F; Liu Y Luminescence; 2015 Jun; 30(4):397-404. PubMed ID: 25103628 [TBL] [Abstract][Full Text] [Related]
28. Fluorescence quenching of coumarins by halide ions. Giri R Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):757-63. PubMed ID: 15036085 [TBL] [Abstract][Full Text] [Related]
29. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance Raman and theoretical calculations. Biswas N; Thomas S; Kapoor S; Mishra A; Wategaonkar S; Mukherjee T J Chem Phys; 2008 Nov; 129(18):184702. PubMed ID: 19045418 [TBL] [Abstract][Full Text] [Related]
30. Quenching of Luminol Fluorescence at Nano-Bio Interface: Towards the Development of an Efficient Energy Transfer System. Sonu VK; Mitra S J Fluoresc; 2019 Jan; 29(1):165-176. PubMed ID: 30519975 [TBL] [Abstract][Full Text] [Related]
31. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles. Stobiecka M; Hepel M Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434 [TBL] [Abstract][Full Text] [Related]
32. Solvent effect on the relative quantum yield and fluorescence quenching of a newly synthesized coumarin derivative. Nagaraja D; Melavanki RM; Patil NR; Geethanjali HS; Kusanur RA Luminescence; 2015 Aug; 30(5):495-502. PubMed ID: 25214175 [TBL] [Abstract][Full Text] [Related]
33. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. Kamshad M; Jahanshah Talab M; Beigoli S; Sharifirad A; Chamani J J Biomol Struct Dyn; 2019 May; 37(8):2030-2040. PubMed ID: 29757090 [TBL] [Abstract][Full Text] [Related]
34. Effect of viscosity and dielectric constant variation on fractional fluorescence quenching analysis of coumarin dye in binary solvent mixtures. Bhavya P; Melavanki R; Kusanur R; Sharma K; Muttannavar VT; Naik LR Luminescence; 2018 Aug; 33(5):933-940. PubMed ID: 29745063 [TBL] [Abstract][Full Text] [Related]
35. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff. Mahajan PG; Bhopate DP; Kolekar GB; Patil SR J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163 [TBL] [Abstract][Full Text] [Related]
36. Biopolymer capped silver nanoparticles as fluorophore for ultrasensitive and selective determination of malathion. Vasimalai N; Abraham John S Talanta; 2013 Oct; 115():24-31. PubMed ID: 24054557 [TBL] [Abstract][Full Text] [Related]
37. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles. Reineck P; Gómez D; Ng SH; Karg M; Bell T; Mulvaney P; Bach U ACS Nano; 2013 Aug; 7(8):6636-48. PubMed ID: 23713513 [TBL] [Abstract][Full Text] [Related]
38. Physicochemical insights in supramolecular interaction of fullerenes C60 and C70 with a monoporphyrin in presence of silver nanoparticles. Mitra R; Chattopadhyay S; Bhattacharya S Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():284-93. PubMed ID: 22277621 [TBL] [Abstract][Full Text] [Related]
39. Dual-color nanoscale assemblies of structurally stable, few-atom silver clusters, as reported by fluorescence resonance energy transfer. Schultz D; Copp SM; Markešević N; Gardner K; Oemrawsingh SS; Bouwmeester D; Gwinn E ACS Nano; 2013 Nov; 7(11):9798-807. PubMed ID: 24090435 [TBL] [Abstract][Full Text] [Related]
40. Fluorescence modulation of 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione by silver nanoparticles and its possible analytical application. Patra D; Malaeb NN Luminescence; 2012; 27(1):11-5. PubMed ID: 21608103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]