These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26057080)

  • 1. Correlation Equation for Predicting the Single-Collector Contact Efficiency of Colloids in a Horizontal Flow.
    Li J; Xie X; Ghoshal S
    Langmuir; 2015 Jul; 31(26):7210-9. PubMed ID: 26057080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media.
    Tufenkji N; Elimelech M
    Environ Sci Technol; 2004 Jan; 38(2):529-36. PubMed ID: 14750730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a trajectory model for predicting attachment of submicrometer particles in porous media: stabilized NZVI as a case study.
    Wei YT; Wu SC
    Environ Sci Technol; 2010 Dec; 44(23):8996-9002. PubMed ID: 21067208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A correlation for the collector efficiency of Brownian particles in clean-bed filtration in sphere packings by a Lattice-Boltzmann method.
    Long W; Hilpert M
    Environ Sci Technol; 2009 Jun; 43(12):4419-24. PubMed ID: 19603656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental analysis of colloid capture by a cylindrical collector in laminar overland flow.
    Wu L; Gao B; Muñoz-Carpena R
    Environ Sci Technol; 2011 Sep; 45(18):7777-84. PubMed ID: 21809854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extended and total flux normalized correlation equation for predicting single-collector efficiency.
    Messina F; Marchisio DL; Sethi R
    J Colloid Interface Sci; 2015 May; 446():185-93. PubMed ID: 25666460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single collector attachment efficiency of colloid capture by a cylindrical collector in laminar overland flow.
    Wu L; Gao B; Muñoz-Carpena R; Pachepsky YA
    Environ Sci Technol; 2012 Aug; 46(16):8878-86. PubMed ID: 22799594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemispheres-in-cell geometry to predict colloid deposition in porous media.
    Ma H; Pedel J; Fife P; Johnson WP
    Environ Sci Technol; 2009 Nov; 43(22):8573-9. PubMed ID: 20028054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle deposition onto micropatterned charge heterogeneous substrates: trajectory analysis.
    Nazemifard N; Masliyah JH; Bhattacharjee S
    J Colloid Interface Sci; 2006 Jan; 293(1):1-15. PubMed ID: 16023132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers.
    Pazmino EF; Ma H; Johnson WP
    Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloid filtration theory and the Happel sphere-in-cell model revisited with direct numerical simulation of colloids.
    Nelson KE; Ginn TR
    Langmuir; 2005 Mar; 21(6):2173-84. PubMed ID: 15752004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method to evaluate polydisperse kaolinite clay particle removal in roughing filtration using colloid filtration theory.
    Lin E; Page D; Pavelic P
    Water Res; 2008 Feb; 42(3):669-76. PubMed ID: 17884131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal and bacterial deposition: role of gravity.
    Chen G; Hong Y; Walker SL
    Langmuir; 2010 Jan; 26(1):314-9. PubMed ID: 19911823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.
    Hahn MW; O'Meliae CR
    Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale simulation of particle deposition in porous media.
    Boccardo G; Marchisio DL; Sethi R
    J Colloid Interface Sci; 2014 Mar; 417():227-37. PubMed ID: 24407681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle deposition onto Janus and patchy spherical collectors.
    Chatterjee R; Mitra SK; Bhattacharjee S
    Langmuir; 2011 Jul; 27(14):8787-97. PubMed ID: 21675730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deposition Dynamics of Rod-Shaped Colloids during Transport in Porous Media under Favorable Conditions.
    Li K; Ma H
    Langmuir; 2018 Mar; 34(9):2967-2980. PubMed ID: 29400469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotation and Retention Dynamics of Rod-Shaped Colloids with Surface Charge Heterogeneity in Sphere-in-Cell Porous Media Model.
    Li K; Ma H
    Langmuir; 2019 Apr; 35(16):5471-5483. PubMed ID: 30925063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.